The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001268 One-half the number of permutations of length n with exactly 4 rising or falling successions. (Formerly M4805 N2053) 5
 0, 0, 0, 0, 0, 1, 11, 113, 1099, 11060, 118484, 1366134, 16970322, 226574211, 3240161105, 49453685911, 802790789101, 13815657556958, 251309386257874, 4818622686395380, 97145520138758844, 2054507019515346789, 45484006970415223287, 1052036480881734378541 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS (1/2) times number of permutations of 12...n such that exactly 4 of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1). REFERENCES F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 J. Riordan, A recurrence for permutations without rising or falling successions, Ann. Math. Statist. 36 (1965), 708-710. FORMULA Coefficient of t^4 in S[n](t) defined in A002464, divided by 2. Recurrence (for n>5): (n-5)*(n^8 - 41*n^7 + 730*n^6 - 7358*n^5 + 45799*n^4 - 179702*n^3 + 432498*n^2 - 581244*n + 332100)*a(n) = (n^10 - 45*n^9 + 895*n^8 - 10301*n^7 + 75340*n^6 - 361190*n^5 + 1124682*n^4 - 2150033*n^3 + 2147364*n^2 - 499899*n - 544266)*a(n-1) - (n^10 - 44*n^9 + 869*n^8 - 10112*n^7 + 76390*n^6 - 388742*n^5 + 1336932*n^4 - 3028095*n^3 + 4237931*n^2 - 3198426*n + 917988)*a(n-2) - (n^10 - 43*n^9 + 823*n^8 - 9195*n^7 + 66108*n^6 - 318138*n^5 + 1033118*n^4 - 2224673*n^3 + 3023402*n^2 - 2325285*n + 761190)*a(n-3) + (n^8 - 33*n^7 + 471*n^6 - 3783*n^5 + 18594*n^4 - 56865*n^3 + 104723*n^2 - 104847*n + 42783)*(n-2)^2*a(n-4). - Vaclav Kotesovec, Aug 11 2013 a(n) ~ n!*exp(-2)/3. - Vaclav Kotesovec, Aug 11 2013 MAPLE S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]        [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)        -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))     end: a:= n-> ceil(coeff(S(n), t, 4)/2): seq(a(n), n=0..25);  # Alois P. Heinz, Jan 11 2013 MATHEMATICA S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t + 2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Ceiling[Coefficient[S[n], t, 4]/2]; Table [a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 24 2014, after Alois P. Heinz *) CROSSREFS Cf. A002464, A000130, A086852. Equals A086855/2. A diagonal of A010028. Sequence in context: A166572 A111463 A142483 * A065538 A287837 A276200 Adjacent sequences:  A001265 A001266 A001267 * A001269 A001270 A001271 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 04:13 EDT 2020. Contains 333105 sequences. (Running on oeis4.)