login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010028
Triangle read by rows: T(n,k) is one-half the number of permutations of length n with exactly n-k rising or falling successions, for n >= 1, 1 <= k <= n. T(1,1) = 1 by convention.
9
1, 1, 0, 1, 2, 0, 1, 5, 5, 1, 1, 8, 24, 20, 7, 1, 11, 60, 128, 115, 45, 1, 14, 113, 444, 835, 790, 323, 1, 17, 183, 1099, 3599, 6423, 6217, 2621, 1, 20, 270, 2224, 11060, 32484, 56410, 55160, 23811, 1, 23, 374, 3950, 27152, 118484, 325322, 554306, 545135, 239653
OFFSET
1,5
COMMENTS
(1/2) times number of permutations of 12...n such that exactly n-k of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
LINKS
J. Riordan, A recurrence for permutations without rising or falling successions, Ann. Math. Statist. 36 (1965), 708-710.
FORMULA
For n>1, coefficient of t^(n-k) in S[n](t) defined in A002464, divided by 2.
EXAMPLE
Triangle T(n,k) begins:
1;
1, 0;
1, 2, 0;
1, 5, 5, 1;
1, 8, 24, 20, 7;
1, 11, 60, 128, 115, 45;
1, 14, 113, 444, 835, 790, 323;
1, 17, 183, 1099, 3599, 6423, 6217, 2621;
...
MAPLE
S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
[n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
-(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
end:
T:= (n, k)-> ceil(coeff(S(n), t, n-k)/2):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Dec 21 2012
MATHEMATICA
S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2]-(1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; T[n_, k_] := Ceiling[Coefficient[S[n], t, n-k]/2]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 14 2014, translated from Alois P. Heinz's Maple code *)
CROSSREFS
Diagonals give A001266 (and A002464), A000130, A000349, A001267, A001268.
Triangle in A086856 transposed. Cf. A001100.
Row sums give A001710.
Sequence in context: A086810 A085838 A094456 * A151860 A338774 A330891
KEYWORD
tabl,nonn
STATUS
approved