OFFSET
1,4
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 264, Table 7.6.1.
LINKS
Vincenzo Librandi, Rows n = 1..50, flattened
FORMULA
G.f.: Sum_{n>=0} n! *( ((1-y)*x^2-x)/((1-y)*x^2-1) )^n, for the triangle read right-to-left. - Vladeta Jovovic, Nov 21 2007
T(n,k) = A136123(n,[n/2]-k). - R. J. Mathar, Jul 01 2022
EXAMPLE
Triangle begins
1
1 1
3 3
1 12 11
11 56 53
3 87 321 309
53 693 2175 2119
11 680 5934 17008 16687
309 8064 55674 150504 148329
53 5805 96370 572650 1485465 1468457
2119 95575 ...
...
MAPLE
A010029 := proc(n, k)
add( x^i*( ((1-y)*x-1)/((1-y)*x^2-1) )^i*i!, i=0..n+1) ;
coeftayl(%, x=0, n) ;
coeftayl(%, y=0, floor(n/2)-k) ;
end proc:
seq(seq( A010029(n, k), k=0..floor(n/2)), n=1..12) ; # R. J. Mathar, Jul 01 2022
MATHEMATICA
max = 16; coes = CoefficientList[ Series[ Sum[ n!*(((1 - y)*x^2 - x)/((1 - y)*x^2 - 1))^n, {n, 0, max}], {x, 0, max}, {y, 0, max}], {x, y}]; Table[ Table[ coes[[n, k]] , {k, 1, Floor[(n + 1)/2]}] // Reverse, {n, 2, max - 4}] // Flatten (* Jean-François Alcover, Jan 10 2013, after Vladeta Jovovic *)
CROSSREFS
KEYWORD
tabf,nonn,nice
AUTHOR
STATUS
approved