login
A050609
Table T(n,k) = Sum_{i=0..2n} (C(2n,i) mod 2)*F(i+k) = Sum_{i=0..n} (C(n,i) mod 2)*F(2i+k).
7
0, 1, 1, 3, 3, 1, 12, 6, 4, 2, 21, 21, 9, 7, 3, 77, 35, 33, 15, 11, 5, 168, 126, 56, 54, 24, 18, 8, 609, 273, 203, 91, 87, 39, 29, 13, 987, 987, 441, 329, 147, 141, 63, 47, 21, 3572, 1598, 1596, 714, 532, 238, 228, 102, 76, 34, 7755, 5781, 2585, 2583, 1155, 861, 385
OFFSET
0,4
COMMENTS
Listed antidiagonalwise as T(0,0), T(1,0), T(0,1), T(2,0), T(1,1), T(0,2), ...
LINKS
FORMULA
Also a(n) = A075148(n, k)*A050613(n).
MAPLE
A050609_as_sum := proc(n, k) local i; RETURN(add(((binomial(n, i) mod 2)*fibonacci(k+2*i)), i=0..n)); end;
A050609_as_product := (n, k) -> (`if`(1 = (n mod 2), luc(n+k), fibonacci(n+k)))*product('luc(2^i)^bit_i(n, i)', 'i'=1..floor_log_2(n+1)); # Produces same answers.
[seq(A050609_as_sum(A025581(n), A002262(n)), n=0..119)];
CROSSREFS
Transpose of A050610. First row: A051656, second row: A050611, third row: A048757, fourth row: A050612. A050613 gives other Maple procedures. Cf. A025581, A002262.
Sequence in context: A174287 A186826 A185418 * A120870 A010029 A143603
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Dec 02 1999
STATUS
approved