login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051656 Sum_{i=0..n} (C(n,i) mod 2)*Fibonacci(2*i). 4
0, 1, 3, 12, 21, 77, 168, 609, 987, 3572, 7755, 28059, 47376, 171409, 372099, 1346268, 2178309, 7881197, 17108664, 61899729, 104512485, 378129724, 820851717, 2969869413, 4809706272, 17401680769, 37775923491, 136674575148 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Positions in the first column (A003622) of Wythoff array of the terms which have their Zeckendorf Expansion patterned as row[2n+1] in Pascal's Triangle computed modulo 2 (A047999)

REFERENCES

Proof in preparation, to be published (see A048757).

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = sum_{i=0..n} (C(2n, 2i) mod 2)*F(2*i) = FL(n)product_{i=0..inf} L(2^i)^bit(n, i) where L is n-th Lucas number (A000032) and FL is defined as in A048757: FL(n) = n-th fibonacci number if n even, n-th Lucas number if n odd.

MATHEMATICA

Table[Sum[Mod[Binomial[n, i], 2]Fibonacci[2i], {i, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Oct 30 2011 *)

PROG

(Haskell)

a051656 = sum . zipWith (*) a001906_list . a047999_row

-- Reinhard Zumkeller, Feb 27 2011

(PARI) a(n)=sum(i=0, n, if(!bitand(i, n-i), fibonacci(2*i))) \\ Charles R Greathouse IV, Jan 04 2013

CROSSREFS

Cf. A048757, A047999, A035513, A038183, A051256. First row of A050609, First column of A050610.

a(n) = A019586[A048757[n]]. A048757[n] = SS(Athis_sequence[n])+1, where SSx means the second Fibonacci Successor of x (= x's Z.E. shifted left twice).

Cf. A001906.

Sequence in context: A160412 A091846 A061262 * A074004 A088099 A110419

Adjacent sequences:  A051653 A051654 A051655 * A051657 A051658 A051659

KEYWORD

nonn,nice

AUTHOR

Antti Karttunen, Nov 30 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 01:12 EDT 2019. Contains 328038 sequences. (Running on oeis4.)