login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051656
Sum_{i=0..n} (C(n,i) mod 2)*Fibonacci(2*i).
4
0, 1, 3, 12, 21, 77, 168, 609, 987, 3572, 7755, 28059, 47376, 171409, 372099, 1346268, 2178309, 7881197, 17108664, 61899729, 104512485, 378129724, 820851717, 2969869413, 4809706272, 17401680769, 37775923491, 136674575148
OFFSET
0,3
COMMENTS
Positions in the first column (A003622) of Wythoff array of the terms which have their Zeckendorf Expansion patterned as row[2n+1] in Pascal's Triangle computed modulo 2 (A047999)
REFERENCES
Proof in preparation, to be published (see A048757).
LINKS
FORMULA
a(n) = sum_{i=0..n} (C(2n, 2i) mod 2)*F(2*i) = FL(n)product_{i=0..inf} L(2^i)^bit(n, i) where L is n-th Lucas number (A000032) and FL is defined as in A048757: FL(n) = n-th fibonacci number if n even, n-th Lucas number if n odd.
MATHEMATICA
Table[Sum[Mod[Binomial[n, i], 2]Fibonacci[2i], {i, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Oct 30 2011 *)
PROG
(Haskell)
a051656 = sum . zipWith (*) a001906_list . a047999_row
-- Reinhard Zumkeller, Feb 27 2011
(PARI) a(n)=sum(i=0, n, if(!bitand(i, n-i), fibonacci(2*i))) \\ Charles R Greathouse IV, Jan 04 2013
CROSSREFS
Cf. A048757, A047999, A035513, A038183, A051256. First row of A050609, First column of A050610.
a(n) = A019586[A048757[n]]. A048757[n] = SS(Athis_sequence[n])+1, where SSx means the second Fibonacci Successor of x (= x's Z.E. shifted left twice).
Cf. A001906.
Sequence in context: A160412 A091846 A061262 * A074004 A088099 A375986
KEYWORD
nonn,nice
AUTHOR
Antti Karttunen, Nov 30 1999
STATUS
approved