login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091846 Pierce expansion of log(2). 0
1, 3, 12, 21, 51, 57, 73, 85, 96, 1388, 4117, 5268, 9842, 11850, 16192, 19667, 29713, 76283, 460550, 1333597, 1462506, 9400189, 13097390, 30254851, 190193800, 201892756, 431766247, 942050077, 6204785761, 16684400052, 23762490104 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If u(0)=exp(1/m) m integer>=1 and u(n+1)=u(n)/frac(u(n)) then floor(u(n))=m*n

REFERENCES

P. Erdos and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no.1, 43-53.

LINKS

Table of n, a(n) for n=1..31.

Pelegrí Viader, Lluís Bibiloni, Jaume Paradís, On a Problem of Alfred Renyi

Vlado Keselj, Length of Finite Pierce Series: Theoretical Analysis and Numerical Computations .

Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335.

Eric Weisstein's World of Mathematics, Pierce Expansion

FORMULA

Let u(0)=1/log(2) and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n))

log(2) = 1/a(1) - 1/(a(1)*a(2)) + 1/(a(1)*a(2)*a(3)) - 1/(a(1)*a(2)*a(3)*a(4)) +- ...

limit n--> infty a(n)^(1/n)=e

PROG

(PARI) r=1/log(2); for(n=1, 30, r=r/(r-floor(r)); print1(floor(r), ", "))

CROSSREFS

Cf. A006275, A006276, A006283, A006284.

Cf. A006784 (Pierce expansion definition), A059180.

Sequence in context: A210282 A160167 A160412 * A061262 A051656 A074004

Adjacent sequences:  A091843 A091844 A091845 * A091847 A091848 A091849

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Mar 09 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 10:37 EDT 2015. Contains 261188 sequences.