OFFSET
1,1
COMMENTS
The j's that match these k's comprise A120869.
LINKS
Clark Kimberling, The equation (j+k+1)^2-4*k = Q*n^2 and related dispersions, Journal of Integer Sequences, 10 (2007), Article #07.2.7.
FORMULA
Let r = (1/2)*sqrt(13). If n is odd, then a(n) = ([n*r+1/2] + 1/2)^2 - (13/4)*n^2; if n is even, then a(n) = (1 + [n*r])^2 - (13/4)*n^2, where [ ] is the floor function. [corrected by Michel Marcus, Jul 08 2020]
(A120869(n) + a(n) + 1)^2 - 4*a(n) = 13*n^2. - Petros Hadjicostas, Jul 08 2020
EXAMPLE
3 = ([1*r + 1/2] + 1/2)^2 - (13/4)*1^2,
3 = (1 + [2*r])^2 - (13/4)*2^2,
1 = ([3*r+1/2] + 1/2)^2 - (13/4)*3^2, etc.
Moreover,
for n = 1, the unique (j,k) is (1,3): (1 + 3 + 1)^2 - 4*3 = 13*1;
for n = 2, the unique (j,k) is (4,3): (4 + 3 + 1)^2 - 4*3 = 13*4;
for n = 3, the unique (j,k) is (9,1): (9 + 1 + 1)^2 - 4*1 = 13*9.
PROG
(PARI) a(n) = my(r = sqrt(13)/2); if (n%2, (floor(n*r+1/2) + 1/2)^2 - (13/4)*n^2, (1 + floor(n*r))^2 - (13/4)*n^2); \\ Michel Marcus, Jul 08 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 09 2006
STATUS
approved