OFFSET
1,1
COMMENTS
This sequence results from A087059 by deleting duplicates.
LINKS
Clark Kimberling, The equation (j+k+1)^2 - 4*k = Q*n^2 and related dispersions, Journal of Integer Sequences, 10 (2007), Article #07.2.7.
EXAMPLE
For each positive integer n, there is a unique pair (j,k) of positive integers such that (j + k + 1)^2 - 4*k = 8*n^2. This representation is used to define the fixed-k dispersion for Q=8, given by A120861, having northwest corner:
1, 7, 41, 239, ...
2, 12, 70, 408, ...
3, 19, 111, 647, ...
4, 24, 140, 816, ...
...
The pair (j,k) for each n, shown in the position occupied by n in the above array, is shown here:
(1,2), (17,2), (43,2), (673,2), ...
(4,1), (32,1), (196,1), (1152,1), ...
(2,7), (46,7), (306,7), (1822,7), ...
(7,4), (63,4), (391,4), (2303,4), ...
...
The fixed-k for row 1 is a(1) = 2;
the fixed-k for row 2 is a(2) = 1; etc.
(For example, (46 + 7 + 1)^2 - 4*7 = 8*19^2.)
PROG
(PARI) f(n) = 3*n + 2*sqrtint(2*n^2) + 2;
unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)); ); };
D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g, 1]=t; listput(listus, t); t = f(t); m[g, 2]=t; listput(listus, t); for (h=3, nb, t = 6*m[g, h-1] - m[g, h-2]; m[g, h] = t; listput(listus, t); ); ); m; }; \\ A120860
q(n) = (1 + sqrtint(2*n^2))^2 - 2*n^2; \\ A087059
lista(nn) = my(m=D(nn)); vector(nn, n, q(m[n, 1])); \\ Michel Marcus, Jul 10 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 10 2006
EXTENSIONS
More terms from Michel Marcus, Jul 10 2020
STATUS
approved