login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120874
Fractal sequence of the Fraenkel array (A038150).
0
1, 2, 1, 3, 4, 2, 5, 1, 6, 7, 3, 8, 9, 4, 10, 2, 11, 12, 5, 13, 1, 14, 15, 6, 16, 17, 7, 18, 3, 19, 20, 8, 21, 22, 9, 23, 4, 24, 25, 10, 26, 2, 27, 28, 11, 29, 30, 12, 31, 5, 32, 33, 13, 34, 1, 35, 36, 14, 37, 38, 15, 39, 6, 40, 41, 16, 42, 43, 17, 44, 7, 45, 46, 18, 47, 3, 48, 49, 19
OFFSET
1,2
COMMENTS
A fractal sequence f contains itself as a proper subsequence; e.g., if you delete the first occurrence of each positive integer, the remaining sequence is f; thus f properly contains itself infinitely many times.
REFERENCES
Clark Kimberling, The equation (j+k+1)^2-4*k=Q*n^2 and related dispersions, Journal of Integer Sequences 10 (2007, Article 07.2.7) 1-17.
EXAMPLE
The fractal sequence f(n) of a dispersion D={d(g,h,)} is defined as follows. For each positive integer n there is a unique (g,h) such that n=d(g,h) and f(n)=g. So f(6)=2 because the row of the Fraenkel array in which 6 occurs is row 2.
MATHEMATICA
num[n_, b_] := Last[NestWhile[{Mod[#[[1]], Last[#[[2]]]], Drop[#[[2]], -1], Append[#[[3]], Quotient[#[[1]], Last[#[[2]]]]]} &, {n, b, {}}, #[[2]] =!= {} &]];
left[n_, b_] := If[Last[num[n, b]] == 0, Dot[num[n, b], Rest[Append[Reverse[b], 0]]], n];
fractal[n_, b_] := # - Count[Last[num[Range[#], b]], 0] &@ FixedPoint[left[#, b] &, n];
Table[fractal[n, Table[Fibonacci[2 i], {i, 12}]], {n, 30}] (* Birkas Gyorgy, Apr 13 2011 *)
Table[Ceiling[NestWhile[Ceiling[#/GoldenRatio^2] - 1 &, n, Ceiling[#/GoldenRatio] == Ceiling[(# - 1)/GoldenRatio]&]/ GoldenRatio], {n, 30}] (* Birkas Gyorgy, Apr 15 2011 *)
CROSSREFS
Cf. A038150.
Sequence in context: A107893 A131987 A337226 * A358103 A112382 A117384
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 10 2006
STATUS
approved