OFFSET
1,2
COMMENTS
The j's that match these k's comprise A005752.
LINKS
Clark Kimberling, The equation (j+k+1)^2-4*k = Q*n^2 and related dispersions, Journal of Integer Sequences, 10 (2007), Article #07.2.7.
Clark Kimberling, The equation m^2 - 4k = 5n^2 and unique representations of positive integers, Fibonacci Quart. 45(4) (2007), 304-312.
FORMULA
Let r = (1/2)*sqrt(5). If n is odd, then a(n) = ([n*r+1/2] + 1/2)^2 - (5/4)*n^2; if n is even, then a(n) = (1 + [n*r])^2 - (5/4)*n^2, where [ ] is the floor function.
EXAMPLE
1 = ([r+1/2] + 1/2)^2 - (5/4)*1^2,
4 =(1+[2*r])^2 - (5/4)*2^2,
1 = ([3*r+1/2] + 1/2)^2 - (5/4)*3^2, etc.
Moreover,
for n = 1, the unique (j,k) is (1,1): (1 + 1 + 1)^2 - 4*1 = 5*1;
for n = 2, the unique (j,k) is (1,4): (1 + 4 + 1)^2 - 4*4 = 5*4;
for n = 3, the unique (j,k) is (5,1): (5 + 1 + 1)^2 - 4*1 = 5*9.
MATHEMATICA
r = Sqrt[5]/2; Table[If[OddQ@ n, (Floor[n r + 1/2] + 1/2)^2 - (5/4) n^2, (1 + Floor[n r])^2 - (5/4) n^2], {n, 73}] (* Michael De Vlieger, Mar 06 2016 *)
PROG
(PARI) a(n) = my(fnt = floor(n*(sqrt(5)+1)/2)); fnt^2 + (2-n)*fnt - n^2 - n + 1; \\ Michel Marcus, Mar 05 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 09 2006
STATUS
approved