login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193955
Triangular array: the fusion of (p(n,x)) by (q(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers), and q(n,x)=sum{((k+1)^2)*x^(n-k) : 0<=k<=n}.
3
1, 1, 4, 1, 5, 13, 2, 9, 23, 45, 3, 14, 36, 71, 120, 5, 23, 59, 116, 196, 300, 8, 37, 95, 187, 316, 484, 692, 13, 60, 154, 303, 512, 784, 1121, 1524, 21, 97, 249, 490, 828, 1268, 1813, 2465, 3225, 34, 157, 403, 793, 1340, 2052, 2934, 3989, 5219, 6625, 55
OFFSET
0,3
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
EXAMPLE
First six rows:
1
1...4
1...5....13
2...9....23...45
3...14...36...71....120
5...23...59...116...196...300
MATHEMATICA
z = 12;
p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
q[n_, x_] := Sum[((k + 1)^2)*x^(n - k), {k, 0, n}] ;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193955 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193956 *)
CROSSREFS
Sequence in context: A120868 A100279 A132379 * A130746 A342925 A125078
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 10 2011
STATUS
approved