login
A193954
Mirror of the triangle A193953.
2
1, 2, 1, 5, 3, 1, 13, 9, 5, 2, 28, 21, 14, 8, 3, 58, 46, 34, 23, 13, 5, 114, 94, 74, 55, 37, 21, 8, 218, 185, 152, 120, 89, 60, 34, 13, 407, 353, 299, 246, 194, 144, 97, 55, 21, 747, 659, 571, 484, 398, 314, 233, 157, 89, 34, 1352, 1209, 1066, 924, 783, 644
OFFSET
0,2
COMMENTS
A193954 is obtained by reversing the rows of the triangle A193953.
FORMULA
Write w(n,k) for the triangle at A193953. The triangle at A193954 is then given by w(n,n-k).
EXAMPLE
First six rows:
1
2....1
5....3....1
13...9....5....2
28...21...14...8...3
58...46...34...23..13..5
MATHEMATICA
z = 12;
p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
q[n_, x_] := x*q[n - 1, x] + n + 1; q[0, x_] := 1
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193953 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193954 *)
CROSSREFS
Cf. A193953.
Sequence in context: A280784 A048472 A038622 * A162997 A112339 A132808
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 10 2011
STATUS
approved