login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193952
Mirror of the triangle A193951.
2
1, 1, 1, 10, 6, 4, 42, 27, 15, 9, 136, 84, 52, 28, 16, 370, 230, 140, 85, 45, 25, 912, 564, 348, 210, 126, 66, 36, 2093, 1295, 798, 490, 294, 175, 91, 49, 4568, 2824, 1744, 1072, 656, 392, 232, 120, 64, 9594, 5931, 3663, 2259, 1386, 846, 504, 297, 153
OFFSET
0,4
COMMENTS
A193952 is obtained by reversing the rows of the triangle A193951.
FORMULA
Write w(n,k) for the triangle at A193951. The triangle at A193952 is then given by w(n,n-k).
EXAMPLE
First six rows:
1
1.....1
10....6....4
42....27...15...9
136...84...52...28..16
370...230..140..85..45..25
MATHEMATICA
z = 12;
p[n_, x_] := Sum[(k + 1) (n + 1)*x^(n - k), {k, 0, n}];
q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193951 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193952 *)
CROSSREFS
Cf. A193952.
Sequence in context: A010171 A006518 A094175 * A158508 A102690 A076366
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 10 2011
STATUS
approved