login
A193952
Mirror of the triangle A193951.
2
1, 1, 1, 10, 6, 4, 42, 27, 15, 9, 136, 84, 52, 28, 16, 370, 230, 140, 85, 45, 25, 912, 564, 348, 210, 126, 66, 36, 2093, 1295, 798, 490, 294, 175, 91, 49, 4568, 2824, 1744, 1072, 656, 392, 232, 120, 64, 9594, 5931, 3663, 2259, 1386, 846, 504, 297, 153
OFFSET
0,4
COMMENTS
A193952 is obtained by reversing the rows of the triangle A193951.
FORMULA
Write w(n,k) for the triangle at A193951. The triangle at A193952 is then given by w(n,n-k).
EXAMPLE
First six rows:
1
1.....1
10....6....4
42....27...15...9
136...84...52...28..16
370...230..140..85..45..25
MATHEMATICA
z = 12;
p[n_, x_] := Sum[(k + 1) (n + 1)*x^(n - k), {k, 0, n}];
q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193951 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193952 *)
CROSSREFS
Cf. A193952.
Sequence in context: A010171 A006518 A094175 * A158508 A102690 A076366
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 10 2011
STATUS
approved