login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193953
Triangular array: the fusion of (p(n,x)) by (q(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers), and q(n,x)=x*q(n-1,x)+n+1, n>=0.
2
1, 1, 2, 1, 3, 5, 2, 5, 9, 13, 3, 8, 14, 21, 28, 5, 13, 23, 34, 46, 58, 8, 21, 37, 55, 74, 94, 114, 13, 34, 60, 89, 120, 152, 185, 218, 21, 55, 97, 144, 194, 246, 299, 353, 407, 34, 89, 157, 233, 314, 398, 484, 571, 659, 747, 55, 144, 254, 377, 508, 644, 783
OFFSET
0,3
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
EXAMPLE
First six rows:
1
1...2
1...3....5
2...5....9....13
3...8....14...21...28
5...13...23...34...46...58
MATHEMATICA
z = 12;
p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
q[n_, x_] := x*q[n - 1, x] + n + 1; q[0, x_] := 1
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193953 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193954 *)
CROSSREFS
Sequence in context: A210880 A210867 A019588 * A201377 A368070 A322942
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 10 2011
STATUS
approved