login
A193956
Mirror of the triangle A193955.
2
1, 4, 1, 13, 5, 1, 45, 23, 9, 2, 120, 71, 36, 14, 3, 300, 196, 116, 59, 23, 5, 692, 484, 316, 187, 95, 37, 8, 1524, 1121, 784, 512, 303, 154, 60, 13, 3225, 2465, 1813, 1268, 828, 490, 249, 97, 21, 6625, 5219, 3989, 2934, 2052, 1340, 793, 403, 157, 34, 13280
OFFSET
0,2
COMMENTS
A193956 is obtained by reversing the rows of the triangle A193955.
FORMULA
Write w(n,k) for the triangle at A193955. The triangle at A193955 is then given by w(n,n-k).
EXAMPLE
First six rows:
1
4.....1
13....5....1
45....23...9....2
120...71...36...14..3
300...192..116..59..23..5
MATHEMATICA
z = 12;
p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
q[n_, x_] := Sum[((k + 1)^2)*x^(n - k), {k, 0, n}] ;
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193955 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193956 *)
CROSSREFS
Cf. A193955.
Sequence in context: A357216 A055252 A318945 * A193843 A116414 A215502
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 10 2011
STATUS
approved