OFFSET
0,2
COMMENTS
Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x-3)^0 + A_1*(x-3)^1 + A_2*(x-3)^2 + ... + A_n*(x-3)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0. - Derek Orr, Oct 14 2014
LINKS
E. Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 (2001) 33-51.
FORMULA
From Peter Bala, Jul 31 2012: (Start)
Matrix product of the shifted Pascal triangle {C(n+1,k+1)}n,k>=0 and the square of the Pascal triangle {2^(n-k)*C(n,k)}n,k>=0. Thus the triangle is the product of two triangular Galton arrays and so is also a Galton array (Neuwirth, Theorem 10).
T(n,k) = sum {i = 0..n} C(n+1,i+1)*2^(i-k)*C(i,k).
Riordan array [1/((1 - x)*(1 - 3*x)), x/(1 - 3*x)].
O.g.f.: 1/((1 - x)*(1 - (3+t)*x)) = 1 + (4+t)*x + (13+7*t+t^2)*x^2 + ....
First column A003462. Row sums A002450. Alternating row sums A000225. Antidiagonal sums (Sum_{k} T(n-k,k)) A082574. Weighted sums (Sum_{k} k*T(n,k)) A014916.
(End)
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = 4, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 17 2014
EXAMPLE
First six rows:
1;
4, 1;
13, 7, 1;
40, 34, 10, 1;
121, 142, 64, 13, 1;
364, 547, 334, 103, 16, 1;
MAPLE
T := proc(n, k) option remember;
if k<0 or k>n then 0 elif n=k then 1 elif n=1 and k=0 then 4
else 4*T(n-1, k) + T(n-1, k-1) -3*T(n-2, k) - T(n-2, k-1) fi end;
seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Jan 18 2014
MATHEMATICA
z = 10;
p[n_, x_] := (x + 1)^n;
q[n_, x_] := (x + 2)^n
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193842 *)
TableForm[Table[h[n], {n, 0, z}]] (* A193843 *)
Flatten[Table[h[n], {n, -1, z}]]
PROG
(PARI) for(n=0, 20, for(k=0, n, print1(1/k!*sum(i=0, n, (3^(i-k)*prod(j=0, k-1, i-j))), ", "))) \\ Derek Orr, Oct 14 2014
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 07 2011
STATUS
approved