login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193842 Triangular array: the fission of the polynomial sequence ((x+1)^n: n >= 0) by the polynomial sequence ((x+2)^n: n >= 0). (Fission is defined at Comments.) 27
1, 1, 4, 1, 7, 13, 1, 10, 34, 40, 1, 13, 64, 142, 121, 1, 16, 103, 334, 547, 364, 1, 19, 151, 643, 1549, 2005, 1093, 1, 22, 208, 1096, 3478, 6652, 7108, 3280, 1, 25, 274, 1720, 6766, 17086, 27064, 24604, 9841, 1, 28, 349, 2542, 11926, 37384, 78322, 105796 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Suppose that p = p(n)*x^n + p(n-1)*x^(n-1) + ... + p(1)*x + p(0) is a polynomial and that Q is a sequence of polynomials:
...
q(k,x) = t(k,0)*x^k + t(k,1)*x^(k-1) + ... + t(k,k-1)*x + t(k,k),
...
for k = 0, 1, 2, ... The Q-downstep of p is the polynomial given by
...
D(p) = p(n)*q(n-1,x) + p(n-1)*q(n-2,x) + ... + p(1)*q(0,x). (Note that p(0) does not appear. "Q-downstep" as just defined differs slightly from "Q-downstep" as defined for a different purpose at A193649.)
...
Now suppose that P = (p(n,x): n >= 0) and Q = (q(n,x): n >= 0) are sequences of polynomials, where n indicates degree. The fission of P by Q, denoted by P^^Q, is introduced here as the sequence W = (w(n,x): n >= 0) of polynomials defined by w(0,x) = 1 and w(n,x) = D(p(n+1,x)).
...
Strictly speaking, ^^ is an operation on sequences of polynomials. However, if P and Q are regarded as numerical triangles (of coefficients of polynomials), then ^^ can be regarded as an operation on numerical triangles. In this case, row n of P^^Q, for n > 0, is given by the matrix product P(n+1)*QQ(n), where P(n+1) =(p(n+1,n+1), p(n+1,n), ..., p(n+1,2), p(n+1,1)) and QQ(n) is the (n+1)-by-(n+1) matrix given by
...
q(n,0) .. q(n,1)............. q(n,n-1) .... q(n,n)
0 ....... q(n-1,0)........... q(n-1,n-2)... q(n-1,n-1)
0 ....... 0.................. q(n-2,n-3) .. q(n-2,n-2)
...
0 ....... 0.................. q(1,0) ...... q(1,1)
0 ....... 0 ................. 0 ........... q(0,0).
Here, the polynomial q(k,x) is taken to be
q(k,0)*x^k + q(k,1)x^(k-1) + ... + q(k,k)*x + q(k,k);
i.e., "q" is used instead of "t".
...
Example: Let p(n,x) = (x+1)^n and q(n,x) = (x+2)^n. Then
...
w(0,x) = 1 by the definition of W,
w(1,x) = D(p(2,x)) = 1*(x+2) + 2*1 = x + 4,
w(2,x) = D(p(3,x)) = 1*(x^2+4*x+4) + 3*(x+2) + 3*1 = x^2 + 7*x + 13,
w(3,x) = D(p(4,x)) = 1*(x^3+6*x^2+12*x+8) + 4*(x^2+4x+4) + 6*(x+2) + 4*1 = x^3 + 10*x^2 + 34*x + 40.
...
From these first 4 polynomials in the sequence P^^Q, we can write the first 4 rows of P^^Q when P, Q, and P^^Q are regarded as triangles:
1
1...4
1...7....13
1...10...34...40
...
In the following examples, r(P^^Q) is the mirror of P^^Q, obtained by reversing the rows of P^^Q. Let u denote the polynomial x^n + x^(n-1) + ... + x + 1.
...
..P........Q...........P^^Q........r(P^^Q)
(x+1)^n....(x+2)^n.....A193842.....A193843
(x+1)^n....(x+1)^n.....A193844.....A193845
(x+2)^n....(x+1)^n.....A193846.....A193847
(2x+1)^n...(x+1)^n.....A193856.....A193857
(x+1)^n....(2x+1)^n....A193858.....A193859
(x+1)^n.......u........A054143.....A104709
..u........(x+1)^n.....A074909.....A074909
..u...........u........A002260.....A004736
(x+2)^n.......u........A193850.....A193851
..u.........(x+2)^n....A193844.....A193845
(2x+1)^n......u........A193860.....A193861
..u.........(2x+1)^n...A115068.....A193862
...
Regarding A193842,
col 1 ...... A000012
col 2 ...... A016777
col 3 ...... A081271
w(n,n) ..... A003462
w(n,n-1) ... A014915
LINKS
Digital Library of Mathematical Functions, Hypergeometric function, analytic properties.
Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52(3) (2014), 195-202.
FORMULA
From Peter Bala, Jul 16 2013: (Start)
T(n,k) = Sum_{i = 0..k} 3^(k-i)*binomial(n-i,k-i).
O.g.f.: 1/((1 - x*t)*(1 - (1 + 3*x)*t)) = 1 + (1 + 4*x)*t + (1 + 7*x + 13*x^2)*t^2 + ....
The n-th row polynomial is R(n,x) = (1/(2*x + 1))*((3*x + 1)^(n+1) - x^(n+1)). (End)
T(n,k) = T(n-1,k) + 4*T(n-1,k-1) - T(n-2,k-1) - 3*T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 4, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 17 2014
T(n,k) = 3^k * C(n,k) * hyp2F1(1, -k, -n, 1/3) with or without the additional term -0^(n-k)/2 depending on the exact definition of the hypergeometric function used. Compare formulas 15.2.5 and 15.2.6 in the DLMF reference. - Peter Luschny, Jul 23 2014
EXAMPLE
First six rows, for 0 <= k <= n and 0 <= n <= 5:
1
1...4
1...7....13
1...10...34....40
1...13...64....142...121
1...16...103...334...547...364
MAPLE
fission := proc(p, q, n) local d, k;
p(n+1, 0)*q(n, x)+add(coeff(p(n+1, x), x^k)*q(n-k, x), k=1..n);
seq(coeff(%, x, n-k), k=0..n) end:
A193842_row := n -> fission((n, x) -> (x+1)^n, (n, x) -> (x+2)^n, n);
for n from 0 to 5 do A193842_row(n) od; # Peter Luschny, Jul 23 2014
# Alternatively:
p := (n, x) -> add(x^k*(1+3*x)^(n-k), k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n, x), x) od; # Peter Luschny, Jun 18 2017
MATHEMATICA
(* First program *)
z = 10;
p[n_, x_] := (x + 1)^n;
q[n_, x_] := (x + 2)^n
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193842 *)
TableForm[Table[h[n], {n, 0, z}]] (* A193843 *)
Flatten[Table[h[n], {n, -1, z}]]
(* Second program *)
Table[SeriesCoefficient[((x+3)^(n+1) -1)/(x+2), {x, 0, n-k}], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
PROG
(Sage)
from mpmath import mp, hyp2f1
mp.dps = 100; mp.pretty = True
def T(n, k):
return 3^k*binomial(n, k)*hyp2f1(1, -k, -n, 1/3)-0^(n-k)//2
for n in range(7):
print([int(T(n, k)) for k in (0..n)]) # Peter Luschny, Jul 23 2014
(Sage) # Second program using the 'fission' operation.
def fission(p, q, n):
F = p(n+1, 0)*q(n, x)+add(expand(p(n+1, x)).coefficient(x, k)*q(n-k, x) for k in (1..n))
return [expand(F).coefficient(x, n-k) for k in (0..n)]
A193842_row = lambda k: fission(lambda n, x: (x+1)^n, lambda n, x: (x+2)^n, k)
for n in range(7): A193842_row(n) # Peter Luschny, Jul 23 2014
(PARI) T(n, k) = sum(j=0, k, 3^(k-j)*binomial(n-j, k-j)); \\ G. C. Greubel, Feb 18 2020
(Magma) [ (&+[3^(k-j)*Binomial(n-j, k-j): j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
CROSSREFS
Cf. A193722 (fusion of P by Q), A193649 (Q-residue), A193843 (mirror of A193842).
Sequence in context: A050411 A010643 A108906 * A134250 A139045 A349147
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 07 2011
EXTENSIONS
Name and Comments edited by Petros Hadjicostas, Jun 05 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 06:32 EDT 2024. Contains 370953 sequences. (Running on oeis4.)