login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193858
Triangular array: the fission of ((x+1)^n) by ((2x+1)^n).
4
1, 2, 3, 4, 10, 7, 8, 28, 34, 15, 16, 72, 124, 98, 31, 32, 176, 392, 444, 258, 63, 64, 416, 1136, 1672, 1404, 642, 127, 128, 960, 3104, 5616, 6152, 4092, 1538, 255, 256, 2176, 8128, 17440, 23536, 20488, 11260, 3586, 511, 512, 4864, 20608, 51136, 81952
OFFSET
0,2
COMMENTS
See A193842 for the definition of fission of two sequences of polynomials or triangular arrays.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
From Andrew Howroyd, Feb 18 2024: (Start)
T(n,k) = Sum_{j=0..k} 2^(n-j) * binomial(n-j,k-j).
G.f.: A(x,y) = 1/(1 - (2 + 3*y)*x + 2*y*(1 + y)*x^2). (End)
EXAMPLE
First six rows:
1
2 3
4 10 7
8 28 34 15
16 72 124 98 31
32 176 392 444 258 63
MAPLE
# The function 'fission' is defined in A193842.
A193858_row := n -> fission((n, x) -> (x+1)^n, (n, x) -> (2*x+1)^n, n);
for n from 0 to 5 do A193858_row(n) od; # Peter Luschny, Jul 23 2014
MATHEMATICA
z = 10;
p[n_, x_] := (x + 1)^n;
q[n_, x_] := (2 x + 1)^n;
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* this sequence *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A193859 *)
PROG
(Sage) # uses[fission from A193842]
A193858_row = lambda k: fission(lambda n, x: (x+1)^n, lambda n, x: (2*x+1)^n, k)
for n in range(7): A193858_row(n) # Peter Luschny, Jul 23 2014
(PARI) T(n, k)={sum(j=0, k, 2^(n-j) * binomial(n-j, k-j))} \\ Andrew Howroyd, Feb 18 2024
CROSSREFS
Sequence in context: A377484 A203070 A088303 * A054930 A329230 A119798
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 07 2011
STATUS
approved