OFFSET
0,2
COMMENTS
See A193842 for the definition of fission of two sequences of polynomials or triangular arrays.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
From Andrew Howroyd, Feb 18 2024: (Start)
T(n,k) = Sum_{j=0..k} 2^(n-j) * binomial(n-j,k-j).
G.f.: A(x,y) = 1/(1 - (2 + 3*y)*x + 2*y*(1 + y)*x^2). (End)
EXAMPLE
First six rows:
1
2 3
4 10 7
8 28 34 15
16 72 124 98 31
32 176 392 444 258 63
MAPLE
# The function 'fission' is defined in A193842.
A193858_row := n -> fission((n, x) -> (x+1)^n, (n, x) -> (2*x+1)^n, n);
for n from 0 to 5 do A193858_row(n) od; # Peter Luschny, Jul 23 2014
MATHEMATICA
z = 10;
p[n_, x_] := (x + 1)^n;
q[n_, x_] := (2 x + 1)^n;
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* this sequence *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A193859 *)
PROG
(Sage) # uses[fission from A193842]
A193858_row = lambda k: fission(lambda n, x: (x+1)^n, lambda n, x: (2*x+1)^n, k)
for n in range(7): A193858_row(n) # Peter Luschny, Jul 23 2014
(PARI) T(n, k)={sum(j=0, k, 2^(n-j) * binomial(n-j, k-j))} \\ Andrew Howroyd, Feb 18 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 07 2011
STATUS
approved