The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193860 Triangular array: the fission of ((2x+1)^n) by (q(n,x)), where q(n,x)=x^n+x^(n-1)+...+x+1. 5
1, 1, 5, 1, 7, 19, 1, 9, 33, 65, 1, 11, 51, 131, 211, 1, 13, 73, 233, 473, 665, 1, 15, 99, 379, 939, 1611, 2059, 1, 17, 129, 577, 1697, 3489, 5281, 6305, 1, 19, 163, 835, 2851, 6883, 12259, 16867, 19171, 1, 21, 201, 1161, 4521, 12585, 26025, 41385, 52905 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
See A193842 for the definition of fission of two sequences of polynomials or triangular arrays.
LINKS
FORMULA
From Peter Bala, Jul 16 2013: (Start)
T(n,k) = sum {i = 0..k} binomial(n+1,k-i)*2^(k-i) for 0 <= k <= n.
O.g.f.: 1/( (1 - 3*x*t)*(1 - (2*x + 1)*t) ) = 1 + (1 + 5*x)*t + (1 + 7*x + 19*x^2)*t^2 + ....
The n-th row polynomial R(n,x) = 1/(1 - x)*( (2*x + 1)^(n+1) - (3*x)^(n+1) ). Cf. A193823. (End)
EXAMPLE
First six rows:
1
1...5
1...7....19
1...9....33...65
1...11...51...131...211
1...13...73...233...473...665
MATHEMATICA
z = 10;
p[n_, x_] := (2 x + 1)^n;
q[0, x_] := 1; q[n_, x_] := x*q[n - 1, x] + 1;
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193860 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A193861 *)
CROSSREFS
Sequence in context: A006569 A224139 A320905 * A211849 A363419 A222182
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 07 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 11:04 EDT 2024. Contains 372938 sequences. (Running on oeis4.)