The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193860 Triangular array: the fission of ((2x+1)^n) by (q(n,x)), where q(n,x)=x^n+x^(n-1)+...+x+1. 5
 1, 1, 5, 1, 7, 19, 1, 9, 33, 65, 1, 11, 51, 131, 211, 1, 13, 73, 233, 473, 665, 1, 15, 99, 379, 939, 1611, 2059, 1, 17, 129, 577, 1697, 3489, 5281, 6305, 1, 19, 163, 835, 2851, 6883, 12259, 16867, 19171, 1, 21, 201, 1161, 4521, 12585, 26025, 41385, 52905 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS See A193842 for the definition of fission of two sequences of polynomials or triangular arrays. LINKS Table of n, a(n) for n=0..53. FORMULA From Peter Bala, Jul 16 2013: (Start) T(n,k) = sum {i = 0..k} binomial(n+1,k-i)*2^(k-i) for 0 <= k <= n. O.g.f.: 1/( (1 - 3*x*t)*(1 - (2*x + 1)*t) ) = 1 + (1 + 5*x)*t + (1 + 7*x + 19*x^2)*t^2 + .... The n-th row polynomial R(n,x) = 1/(1 - x)*( (2*x + 1)^(n+1) - (3*x)^(n+1) ). Cf. A193823. (End) EXAMPLE First six rows: 1 1...5 1...7....19 1...9....33...65 1...11...51...131...211 1...13...73...233...473...665 MATHEMATICA z = 10; p[n_, x_] := (2 x + 1)^n; q[0, x_] := 1; q[n_, x_] := x*q[n - 1, x] + 1; p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193860 *) TableForm[Table[h[n], {n, 0, z}]] Flatten[Table[h[n], {n, -1, z}]] (* A193861 *) CROSSREFS Cf. A193842, A193861. A193823. Sequence in context: A006569 A224139 A320905 * A211849 A363419 A222182 Adjacent sequences: A193857 A193858 A193859 * A193861 A193862 A193863 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Aug 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 11:04 EDT 2024. Contains 372938 sequences. (Running on oeis4.)