The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193844 Triangular array: the fission of ((x+1)^n) by ((x+1)^n); i.e., the self-fission of Pascal's triangle. 6
 1, 1, 3, 1, 5, 7, 1, 7, 17, 15, 1, 9, 31, 49, 31, 1, 11, 49, 111, 129, 63, 1, 13, 71, 209, 351, 321, 127, 1, 15, 97, 351, 769, 1023, 769, 255, 1, 17, 127, 545, 1471, 2561, 2815, 1793, 511, 1, 19, 161, 799, 2561, 5503, 7937, 7423, 4097, 1023 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS See A193842 for the definition of fission of two sequences of polynomials or triangular arrays. A193844 is also the fission of (p1(n,x)) by (q1(n,x)), where p1(n,x)=x^n+x^(n-1)+...+x+1 and q1(n,x)=(x+2)^n. Essentially A119258 but without the main diagonal. - Peter Bala, Jul 16 2013 From Robert Coquereaux, Oct 02 2014: (Start) This is also a rectangular array A(n,p) read down the antidiagonals: 1 1 1 1 1 1 1 1 1 3 5 7 9 11 13 15 17 19 7 17 31 49 71 97 127 161 199 15 49 111 209 351 545 799 1121 1519 31 129 351 769 1471 2561 4159 6401 9439 ... Calling Gr(n) the Grassmann algebra with n generators, A(n,p) is the dimension of the space of Gr(n)-valued symmetric multilinear forms with vanishing graded divergence. If p is odd A(n,p) is the dimension of the cyclic cohomology group of order p of the Z2 graded algebra Gr(n). If p is even, the dimension of this cohomology group is A(n,p)+1. A(n,p) = 2^n*A059260(p,n-1)-(-1)^p. (End) The n-th row are also the coefficients of the polynomial P=sum_{k=0..n} (X+2)^k (in falling order, i.e., that of X^n first). - M. F. Hasler, Oct 15 2014 LINKS Jean-François Chamayou, A Random Difference Equation with Dufresne Variables revisited, arXiv:1410.1708 [math.PR], 2014. R. Coquereaux and E. Ragoucy, Currents on Grassmann algebras, J. of Geometry and Physics, 1995, Vol 15, pp 333-352. R. Coquereaux and E. Ragoucy, Currents on Grassmann algebras, arXiv:hep-th/9310147, 1993. C. Kassel, A Künneth formula for the cyclic cohomology of Z2-graded algebras, Math. Ann. 275 (1986) 683. FORMULA From Peter Bala, Jul 16 2013: (Start) T(n,k) = sum {i = 0..k} (-1)^i*binomial(n+1,k-i)*2^(k-i). O.g.f.: 1/( (1 - x*t)*(1 - (2*x + 1)*t) ) = 1 + (1 + 3*x)*t + (1 + 5*x + 7*x^2)*t^2 + .... The n-th row polynomial R(n,x) = 1/(x+1)*( (2*x+1)^(n+1) - x^(n+1) ). (End) T(n,k) = T(n-1,k) + 3*T(n-1,k-1) - T(n-2,k-1) - 2*T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 3, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 17 2014 T(n,k) = 2^k*binomial(n+1,k)*hyper2F1(1,-k,-k+n+2, 1/2). - Peter Luschny, Jul 23 2014 EXAMPLE First six rows: 1 1....3 1....5....7 1....7....17....15 1....9....31....49....31 1....11...49....111...129...63 MAPLE A193844 := (n, k) -> 2^k*binomial(n+1, k)*hypergeom([1, -k], [-k+n+2], 1/2); for n from 0 to 5 do seq(round(evalf(A193844(n, k))), k=0..n) od; # Peter Luschny, Jul 23 2014 # Alternatively p := (n, x) -> add(x^k*(1+2*x)^(n-k), k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n, x), x) od; # Peter Luschny, Jun 18 2017 MATHEMATICA z = 10; p[n_, x_] := (x + 1)^n; q[n_, x_] := (x + 1)^n p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193844 *) TableForm[Table[h[n], {n, 0, z}]] Flatten[Table[h[n], {n, -1, z}]] (* A193845 *) PROG (Sage) # uses[fission from A193842] p = lambda n, x: (x+1)^n A193844_row = lambda n: fission(p, p, n) for n in range(7): print(A193844_row(n)) # Peter Luschny, Jul 23 2014 CROSSREFS Cf. A193842, A193845, A119258. Columns, diagonals: A000225, A000337, A055580, A027608, A211386, A211388, A000012, A005408, A056220, A199899. A145661 is an essentially identical triangle. Sequence in context: A201811 A199898 A320904 * A201552 A216182 A143524 Adjacent sequences: A193841 A193842 A193843 * A193845 A193846 A193847 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Aug 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 30 02:54 EDT 2023. Contains 361603 sequences. (Running on oeis4.)