login
A199898
T(n,k)=Number of -k..k arrays x(0..n-1) of n elements with zero sum, and adjacent elements not both strictly positive and not both strictly negative
11
1, 1, 3, 1, 5, 7, 1, 7, 15, 15, 1, 9, 25, 49, 33, 1, 11, 37, 111, 159, 75, 1, 13, 51, 209, 461, 533, 171, 1, 15, 67, 351, 1043, 2035, 1783, 391, 1, 17, 85, 545, 2031, 5725, 8823, 6027, 899, 1, 19, 105, 799, 3573, 13363, 30199, 39053, 20437, 2077, 1, 21, 127, 1121, 5839
OFFSET
1,3
COMMENTS
Table starts
....1.....1......1.......1........1........1.........1.........1..........1
....3.....5......7.......9.......11.......13........15........17.........19
....7....15.....25......37.......51.......67........85.......105........127
...15....49....111.....209......351......545.......799......1121.......1519
...33...159....461....1043.....2031.....3573......5839......9021......13333
...75...533...2035....5725....13363....27457.....51395.....89577.....147547
..171..1783...8823...30199....82555...193689....406575....783989....1413739
..391..6027..39053..164993...536967..1462859...3500269...7584081...15191479
..899.20437.172355..890299..3409609.10651367..28684325..68971571..151640029
.2077.69665.767425.4877477.22163661.80142549.245319361.661158741.1611184533
LINKS
FORMULA
Empirical for rows:
T(1,k) = 1
T(2,k) = 2*k + 1
T(3,k) = k^2 + 5*k + 1
T(4,k) = (4/3)*k^3 + 6*k^2 + (20/3)*k + 1
T(5,k) = (11/12)*k^4 + (49/6)*k^3 + (193/12)*k^2 + (41/6)*k + 1
T(6,k) = (11/10)*k^5 + (55/6)*k^4 + (55/2)*k^3 + (173/6)*k^2 + (37/5)*k + 1
T(7,k) = (151/180)*k^6 + (163/15)*k^5 + (377/9)*k^4 + (395/6)*k^3 + (7429/180)*k^2 + (93/10)*k + 1
EXAMPLE
Some solutions for n=7 k=6
..1....3....3....4...-3....4....4....0....3....3...-3...-6....4...-5....0....4
.-3...-4...-4...-6....5...-2...-6....6...-3...-5....0....3...-4....5...-3...-5
..0....1....2....2...-3....4....4...-5....0....4....3...-1....0...-4....5....1
.-1....0...-3....0....0...-1...-3....3....4....0....0....6....5....6....0...-1
..4....0....2....0....1....0....0...-6...-1....2...-2...-2...-6...-3...-3....5
.-6...-4...-2....3...-6...-5...-4....5....3....0....2....4....3....4....6....0
..5....4....2...-3....6....0....5...-3...-6...-4....0...-4...-2...-3...-5...-4
CROSSREFS
Column 1 is A136029(n+1)
Row 3 is A082111
Sequence in context: A193648 A221881 A201811 * A320904 A193844 A201552
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Nov 11 2011
STATUS
approved