|
|
A201552
|
|
Square array read by diagonals: T(n,k) = number of arrays of n integers in -k..k with sum equal to 0.
|
|
17
|
|
|
1, 1, 3, 1, 5, 7, 1, 7, 19, 19, 1, 9, 37, 85, 51, 1, 11, 61, 231, 381, 141, 1, 13, 91, 489, 1451, 1751, 393, 1, 15, 127, 891, 3951, 9331, 8135, 1107, 1, 17, 169, 1469, 8801, 32661, 60691, 38165, 3139, 1, 19, 217, 2255, 17151, 88913, 273127, 398567, 180325, 8953, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Equivalently, the number of compositions of n*(k + 1) into n parts with maximum part size 2*k+1. - Andrew Howroyd, Oct 14 2017
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..9999
|
|
FORMULA
|
Empirical: T(n,k) = Sum_{i=0..floor(k*n/(2*k+1))} (-1)^i*binomial(n,i)*binomial((k+1)*n-(2*k+1)*i-1,n-1).
The above empirical formula is true and can be derived from the formula for the number of compositions with given number of parts and maximum part size. - Andrew Howroyd, Oct 14 2017
Empirical for rows:
T(1,k) = 1
T(2,k) = 2*k + 1
T(3,k) = 3*k^2 + 3*k + 1
T(4,k) = (16/3)*k^3 + 8*k^2 + (14/3)*k + 1
T(5,k) = (115/12)*k^4 + (115/6)*k^3 + (185/12)*k^2 + (35/6)*k + 1
T(6,k) = (88/5)*k^5 + 44*k^4 + 46*k^3 + 25*k^2 + (37/5)*k + 1
T(7,k) = (5887/180)*k^6 + (5887/60)*k^5 + (2275/18)*k^4 + (357/4)*k^3 + (6643/180)*k^2 + (259/30)*k + 1
T(m,k) = (1/Pi)*integral_{x=0..Pi} (sin((k+1/2)x)/sin(x/2))^m dx; for the proof see Dirichlet's Kernel (http://en.wikipedia.org/wiki/Dirichlet_kernel); so f(m,n) = (1/Pi)*integral_{x=0..Pi} (Sum_{k=-n..n} exp(I*k*x))^m dx = sum(integral(exp(I(k_1+...+k_m).x),x=0..Pi)/Pi,{k_1,...,k_m=-n..n}) = sum(delta_0(k1+...+k_m),{k_1,...,k_m=-n..n}) = number of arrays of m integers in -n..n with sum zero. - Yalcin Aktar, Dec 03 2011
|
|
EXAMPLE
|
Some solutions for n=7, k=3:
..1...-2....1...-1....1...-3....0....0....1....2....3...-3....0....2....1....0
.-1....2...-2....2....2....2...-1....0....2....2...-2...-1...-2...-1....2...-1
.-3...-1....1...-3....2....1....0....1....3....0....2....0...-1....2...-2...-1
..0....3....3....3...-2...-2....3....3...-3...-3....0...-1...-1...-1....0....3
..2...-1...-1...-1...-3....0...-3...-2....1...-1...-1....1....1....0....3...-1
..2...-1...-3....0....2....3....0....1...-2....1....1....1....3...-2...-3...-3
.-1....0....1....0...-2...-1....1...-3...-2...-1...-3....3....0....0...-1....3
Table starts:
. 1, 1, 1, 1, 1, 1,...
. 3, 5, 7, 9, 11, 13,...
. 7, 19, 37, 61, 91, 127,...
. 19, 85, 231, 489, 891, 1469,...
. 51, 381, 1451, 3951, 8801, 17151,...
. 141, 1751, 9331, 32661, 88913, 204763,...
. 393, 8135, 60691, 273127, 908755, 2473325,...
.1107, 38165, 398567, 2306025, 9377467, 30162301,...
.3139, 180325, 2636263, 19610233, 97464799, 370487485,...
|
|
MATHEMATICA
|
comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}]; T[n_, k_] := comps[n*(k + 1), 2*k + 1, n]; Table[T[n - k + 1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
|
|
PROG
|
(PARI)
comps(r, m, k)=sum(i=0, floor((r-k)/m), (-1)^i*binomial(r-1-i*m, k-1)*binomial(k, i));
T(n, k) = comps(n*(k+1), 2*k+1, n); \\ Andrew Howroyd, Oct 14 2017
|
|
CROSSREFS
|
Columns 1-10: A002426, A005191, A025012, A025014, A201549, A201550, A201551, A322538, A322539, A322540.
Rows 3-10: A003215, A063496(n+1), A083669, A201553, A201554, A322535, A322536, A322537.
Cf. A286928.
Sequence in context: A199898 A320904 A193844 * A216182 A143524 A134249
Adjacent sequences: A201549 A201550 A201551 * A201553 A201554 A201555
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin, Dec 02 2011
|
|
STATUS
|
approved
|
|
|
|