|
|
A320904
|
|
T(n, k) = binomial(2*n + 1 - k, k)*hypergeom([1, 1, -k], [1, 2*(n - k + 1)], -1), triangle read by rows, T(n, k) for n >= 0 and 0 <= k <= n.
|
|
0
|
|
|
1, 1, 3, 1, 5, 7, 1, 7, 16, 15, 1, 9, 29, 42, 31, 1, 11, 46, 93, 99, 63, 1, 13, 67, 176, 256, 219, 127, 1, 15, 92, 299, 562, 638, 466, 255, 1, 17, 121, 470, 1093, 1586, 1486, 968, 511, 1, 19, 154, 697, 1941, 3473, 4096, 3302, 1981, 1023
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..54.
|
|
EXAMPLE
|
Triangle starts:
[0] 1
[1] 1, 3
[2] 1, 5, 7
[3] 1, 7, 16, 15
[4] 1, 9, 29, 42, 31
[5] 1, 11, 46, 93, 99, 63
[6] 1, 13, 67, 176, 256, 219, 127
[7] 1, 15, 92, 299, 562, 638, 466, 255
[8] 1, 17, 121, 470, 1093, 1586, 1486, 968, 511
|
|
MAPLE
|
T := (n, k) -> binomial(2*n + 1 - k, k)*hypergeom([1, 1, -k], [1, 2*(n-k+1)], -1):
for n from 0 to 11 do seq(simplify(T(n, k)), k = 0..n) od;
|
|
CROSSREFS
|
Row sums are A105693(n-1).
Cf. A097750.
Sequence in context: A221881 A201811 A199898 * A193844 A201552 A216182
Adjacent sequences: A320901 A320902 A320903 * A320905 A320906 A320907
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Peter Luschny, Oct 28 2018
|
|
STATUS
|
approved
|
|
|
|