The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105693 a(n) = Fibonacci(2n+2)-2^n. 6
 0, 1, 4, 13, 39, 112, 313, 859, 2328, 6253, 16687, 44320, 117297, 309619, 815656, 2145541, 5637351, 14799280, 38826025, 101809867, 266865720, 699311581, 1832117599, 4799138368, 12569491809, 32917725667, 86200462408, 225717215989, 591018294423, 1547471885008 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES Czabarka, É., Flórez, R., Junes, L., & Ramírez, J. L. (2018). Enumerations of peaks and valleys on non-decreasing Dyck paths. Discrete Mathematics, 341(10), 2789-2807. See Table 4. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,-7,2). FORMULA G.f.: x(1-x)/((1-2x)(1-3x+x^2)); a(n)=sum{k=0..n+1, binomial(n+1, k+1)*sum{j=0..floor(k/2), F(k-2j)}}. a(n) = A258109(n+1) + A001906(n), n>1. - Yuriy Sibirmovsky, Sep 12 2016 a(n) = 5*a(n-1)-7*a(n-2)+2*a(n-3) for n>2. - Colin Barker, Sep 12 2016 MATHEMATICA Table[Fibonacci[2n+2]-2^n, {n, 0, 30}] (* or *) LinearRecurrence[{5, -7, 2}, {0, 1, 4}, 40] (* Harvey P. Dale, Jul 21 2016 *) PROG (MAGMA) [Fibonacci(2*n+2)-2^n: n in [0..30]]; // Vincenzo Librandi, Apr 21 2011 (PARI) concat(0, Vec(x*(1-x)/((1-2*x)*(1-3*x+x^2)) + O(x^40))) \\ Colin Barker, Sep 12 2016 (PARI) a(n)=fibonacci(2*n+2)-2^n \\ Charles R Greathouse IV, Sep 12 2016 CROSSREFS Cf. A000045, A061667, A001906, A258109. Sequence in context: A027076 A183112 A266429 * A215404 A290929 A121192 Adjacent sequences:  A105690 A105691 A105692 * A105694 A105695 A105696 KEYWORD easy,nonn AUTHOR Paul Barry, Apr 17 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 02:56 EST 2020. Contains 338899 sequences. (Running on oeis4.)