OFFSET
0,5
COMMENTS
Apply the Riordan array (1-x,x/(1+x)) to C(n)=A000108(n).
Alternatively, this sequence corresponds to the number of positive walks with n steps {-1,0,1} starting at the origin, ending at altitude 2, and staying strictly above the x-axis. - D. Nguyen, December 1, 2016.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
FORMULA
G.f.: (1-x^2)*(1-sqrt((1-3*x)/(1+x)))/(2*x).
Let b(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*C(k) = A005043(n); then a(n) = b(n) - b(n-2).
Conjecture: (n+1)*a(n)+(2-3n)*a(n-1) +(1-n)*a(n-2)+3*(n-4)*a(n-3)=0. - R. J. Mathar, Dec 13 2011
a(n) ~ 3^(n-1/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014
From Peter Bala, Oct 29 2015: (Start)
a(n) = Sum_{k = 1..floor((n-1)/2)} binomial(n-2,2*k-1)*Catalan(k) for n >= 1.
(n+1)*(n-3)*a(n) = (n-2)*(2*n-3)*a(n-1) + 3*(n-2)*(n-3)*a(n-2) with a(2) = 0, a(3) = 1. Mathar's 4-term recurrence above follows easily from this. (End)
MATHEMATICA
CoefficientList[Series[(1-x^2)*(1-Sqrt[(1-3*x)/(1+x)])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x^2)*(1-sqrt((1-3*x)/(1+x)))/(2*x)) \\ G. C. Greubel, Mar 16 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 17 2005
STATUS
approved