login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097750
Reversal of the binomial transform of the Whitney triangle A004070 (see A131250), triangle read by rows, T(n,k) for 0 <= k <= n.
3
1, 1, 2, 1, 4, 4, 1, 6, 11, 8, 1, 8, 22, 26, 16, 1, 10, 37, 64, 57, 32, 1, 12, 56, 130, 163, 120, 64, 1, 14, 79, 232, 386, 382, 247, 128, 1, 16, 106, 378, 794, 1024, 848, 502, 256, 1, 18, 137, 576, 1471, 2380, 2510, 1816, 1013, 512, 1, 20, 172, 834, 2517, 4944, 6476, 5812, 3797, 2036, 1024
OFFSET
0,3
COMMENTS
Reversal of the Riordan array (1/(1-2x), x/(1-x)^2), see A131250. Row sums are A061667 and diagonal sums of A131250 are A045623. The n-th row elements correspond to the end elements of the 2n-th row of the Whitney triangle A004070. A131250 corresponds to the product of Pascal's triangle and the Whitney triangle.
FORMULA
T(n, k) = Sum_{i=0..n} binomial(n+k, i-k).
T(n, k) = T(n-1,k)+2*T(n-1,k-1)-T(n-2,k-2), T(0,0)=1, T(1,0)=1, T(1,1)=2, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 11 2014
T(n, k) = binomial(2*n-k, k)*hypergeom([1, 1, -k], [1, 1 - 2*k + 2*n], -1). - Peter Luschny, Oct 28 2018
EXAMPLE
Triangle begins:
1;
1, 2;
1, 4, 4;
1, 6, 11, 8;
1, 8, 22, 26, 16;
1, 10, 37, 64, 57, 32;
1, 12, 56, 130, 163, 120, 64;
1, 14, 79, 232, 386, 382, 247, 128;
MAPLE
T := (n, k) -> binomial(2*n-k, k)*hypergeom([1, 1, -k], [1, 1-2*k+2*n], -1):
for n from 0 to 8 do seq(simplify(T(n, k)), k=0..n) od; # Peter Luschny, Oct 28 2018
MATHEMATICA
T[_, 0] = 1; T[n_, n_] := 2^n; T[n_, k_] /; 0 < k < n := T[n, k] = T[n - 1, k] + 2 T[n - 1, k - 1] - T[n - 2, k - 2]; T[_, _] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 19 2019 *)
CROSSREFS
Row sums are A061667.
Sequence in context: A200057 A136600 A136672 * A304623 A133544 A303872
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Aug 23 2004
EXTENSIONS
Definition and comments corrected by Philippe Deléham, Jan 11 2014
STATUS
approved