login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136600
Triangle of coefficients of characteristic polynomials of a special type of Cartan matrix: E_n for E_6,E_7,E_8,E_11 example M(6)/ E_6: {{2, -1, 0, 0, 0, 0}, {-1, 2, -1, 0, 0, 0}, {0, -1, 2, -1, 0, -1}, {0, 0, -1, 2, -1, 0}, {0, 0, 0, -1, 2, 0}, {0, 0, -1, 0, 0, 2}},.
0
1, 2, -1, 4, -4, 1, 6, -11, 6, -1, 5, -20, 21, -8, 1, 4, -34, 56, -36, 10, -1, 3, -52, 125, -120, 55, -12, 1, 2, -73, 246, -329, 220, -78, 14, -1, 1, -96, 440, -784, 714, -364, 105, -16, 1, 0, -120, 730, -1679, 1992, -1364, 560, -136, 18, -1, -1, -144, 1140, -3304, 4949, -4356, 2379, -816, 171, -20, 1, -2, -167, 1694
OFFSET
1,2
COMMENTS
Row sums are: {1, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0}.
Solution for a polynomial recursion gives for higher polynomials:
p1 = Join[{1}, Table[CharacteristicPolynomial[MO[n], x], {n, 1, 12}]];
Table[Solve[{p1[[n]] - (a0*x - b0)*p1[[n - 1]] - c0*p1[[n - 2]] == 0, p1[[n + 1]] - (a0*x - b0)* p1[[n]] - c0*p1[[n - 1]] == 0, p1[[n + 2]] - (a0*x - b0)*p1[[n + 1]] - c0*p1[[n]] == 0}, {a0, b0, c0}], {n, 3, 10}];
Polynomial recursion:
P[x, n] = (2 - x)*P[x, n - 1] + P[x, n - 2]
REFERENCES
R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8.page 139
E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl, 1957
Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S. :ISBN 0-8218-2848-7, 1978
FORMULA
h(n,m)=If[ n == m, a[n], If[n == m - 1 ||n == m + 1 || n == m - 3 || n == m + 3, If[n == m - 1 && m < d,b[m - 1], If[n == m + 1 && n < d, b[n - 1], If[n ==m - 3 || n == m + 3, If[n == m - 3 && m == d, c[m - 3], If[n == m + 3 && n == d, c[n - 3], 0]]]]]]] ; for n,m<=d
EXAMPLE
{1},
{2, -1},
{4, -4, 1},
{6, -11, 6, -1},
{5, -20, 21, -8, 1},
{4, -34, 56, -36, 10, -1},
{3, -52, 125, -120,55, -12, 1},
{2, -73, 246, -329, 220, -78, 14, -1},
{1, -96, 440, -784, 714, -364, 105, -16, 1},
{0, -120, 730, -1679, 1992, -1364, 560, -136, 18, -1},
{-1, -144, 1140, -3304, 4949, -4356, 2379,-816, 171, -20, 1},
{-2, -167, 1694, -6069, 11210, -12297, 8554, -3875, 1140, -210, 22, -1},
{-3, -188, 2415, -10528, 23540, -31448, 27026, -15488, 5984, -1540, 253, -24, 1}
MATHEMATICA
a[n_] := 2; b[n_] := -1; c[n_] := -1; T[n_, m_, d_] := If[ n == m, a[n], If[n == m - 1 || n == m + 1 || n ==m - 3 || n == m + 3, If[n == m - 1 &&m < d, b[m - 1], If[n == m + 1 && n < d, b[n - 1], If[n == m - 3 || n == m + 3, If[n == m - 3 && m == d, c[m - 3], If[n == m + 3 && n == d, c[n - 3], 0]]]]]]] MO[d_] := Table[If[TrueQ[T[n, m, d] == Null], 0, T[n, m, d]], {n, 1, d}, {m, 1, d}]; a1 = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[MO[n], x], x], {n, 1, 12}]]' Flatten[a1]
CROSSREFS
Cf. A129844.
Sequence in context: A105542 A208907 A200057 * A136672 A097750 A304623
KEYWORD
uned,tabl,sign
AUTHOR
Roger L. Bagula, Mar 24 2008
STATUS
approved