OFFSET
1,2
COMMENTS
Row sums are: {1, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0}.
Solution for a polynomial recursion gives for higher polynomials:
p1 = Join[{1}, Table[CharacteristicPolynomial[MO[n], x], {n, 1, 12}]];
Table[Solve[{p1[[n]] - (a0*x - b0)*p1[[n - 1]] - c0*p1[[n - 2]] == 0, p1[[n + 1]] - (a0*x - b0)* p1[[n]] - c0*p1[[n - 1]] == 0, p1[[n + 2]] - (a0*x - b0)*p1[[n + 1]] - c0*p1[[n]] == 0}, {a0, b0, c0}], {n, 3, 10}];
Polynomial recursion:
P[x, n] = (2 - x)*P[x, n - 1] + P[x, n - 2]
REFERENCES
R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8.page 139
E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl, 1957
Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S. :ISBN 0-8218-2848-7, 1978
FORMULA
h(n,m)=If[ n == m, a[n], If[n == m - 1 ||n == m + 1 || n == m - 3 || n == m + 3, If[n == m - 1 && m < d,b[m - 1], If[n == m + 1 && n < d, b[n - 1], If[n ==m - 3 || n == m + 3, If[n == m - 3 && m == d, c[m - 3], If[n == m + 3 && n == d, c[n - 3], 0]]]]]]] ; for n,m<=d
EXAMPLE
{1},
{2, -1},
{4, -4, 1},
{6, -11, 6, -1},
{5, -20, 21, -8, 1},
{4, -34, 56, -36, 10, -1},
{3, -52, 125, -120,55, -12, 1},
{2, -73, 246, -329, 220, -78, 14, -1},
{1, -96, 440, -784, 714, -364, 105, -16, 1},
{0, -120, 730, -1679, 1992, -1364, 560, -136, 18, -1},
{-1, -144, 1140, -3304, 4949, -4356, 2379,-816, 171, -20, 1},
{-2, -167, 1694, -6069, 11210, -12297, 8554, -3875, 1140, -210, 22, -1},
{-3, -188, 2415, -10528, 23540, -31448, 27026, -15488, 5984, -1540, 253, -24, 1}
MATHEMATICA
a[n_] := 2; b[n_] := -1; c[n_] := -1; T[n_, m_, d_] := If[ n == m, a[n], If[n == m - 1 || n == m + 1 || n ==m - 3 || n == m + 3, If[n == m - 1 &&m < d, b[m - 1], If[n == m + 1 && n < d, b[n - 1], If[n == m - 3 || n == m + 3, If[n == m - 3 && m == d, c[m - 3], If[n == m + 3 && n == d, c[n - 3], 0]]]]]]] MO[d_] := Table[If[TrueQ[T[n, m, d] == Null], 0, T[n, m, d]], {n, 1, d}, {m, 1, d}]; a1 = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[MO[n], x], x], {n, 1, 12}]]' Flatten[a1]
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Mar 24 2008
STATUS
approved