login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303872 Triangle read by rows: T(0,0) = 1; T(n,k) = -T(n-1,k) + 2 T(n-1,k-1) for k = 0,1,...,n; T(n,k)=0 for n or k < 0. 6
1, -1, 2, 1, -4, 4, -1, 6, -12, 8, 1, -8, 24, -32, 16, -1, 10, -40, 80, -80, 32, 1, -12, 60, -160, 240, -192, 64, -1, 14, -84, 280, -560, 672, -448, 128, 1, -16, 112, -448, 1120, -1792, 1792, -1024, 256, -1, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row n gives coefficients in expansion of (-1+2x)^n. Row sums=1.

In the center-justified triangle, the numbers in skew diagonals pointing top-Left give the triangle in A133156 (coefficients of Chebyshev polynomials of the second kind), and the numbers in skew diagonals pointing top-right give the triangle in A305098. The coefficients in the expansion of 1/(1-x) are given by the sequence generated by the row sums. The generating function of the central terms is 1/sqrt(1+8x), signed version of A059304.

REFERENCES

Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 389-391.

LINKS

Table of n, a(n) for n=0..54.

Shara Lalo, Skew diagonals in center-justified triangle

Paweł Lorek, Piotr Markowski, Absorption time and absorption probabilities for a family of multidimensional gambler models, arXiv:1812.00690 [math.PR], 2018.

FORMULA

Also has the g.f.: 1 / (1 + t - 2t*x).

EXAMPLE

Triangle begins:

1;

-1, 2;

1, -4, 4;

-1, 6, -12, 8;

1, -8, 24, -32, 16;

-1, 10, -40, 80, -80, 32;

1, -12, 60, -160, 240, -192, 64;

-1, 14, -84, 280, -560, 672, -448, 128;

1, -16, 112, -448, 1120, -1792, 1792, -1024, 256;

MATHEMATICA

T[0, 0] = 1; T[n_, k_] := If[n < 0 || k < 0, 0, - T[n - 1, k] + 2 T[n - 1, k - 1]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten.

For[i = 0, i < 4, i++, Print[CoefficientList[Expand[(-1 +2 x)^i], x]]].

PROG

(PARI) T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, -T(n-1, k) + 2*T(n-1, k-1)));

tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 26 2018

CROSSREFS

Row sums give A000012.

Signed version of A013609 ((1+2*x)^n).

Cf. A033999 (column 0).

Sequence in context: A097750 A304623 A133544 * A013609 A154558 A220836

Adjacent sequences: A303869 A303870 A303871 * A303873 A303874 A303875

KEYWORD

tabl,easy,sign

AUTHOR

Shara Lalo, May 25 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 07:08 EST 2022. Contains 358673 sequences. (Running on oeis4.)