login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Reversal of the binomial transform of the Whitney triangle A004070 (see A131250), triangle read by rows, T(n,k) for 0 <= k <= n.
3

%I #27 Jan 26 2021 08:31:50

%S 1,1,2,1,4,4,1,6,11,8,1,8,22,26,16,1,10,37,64,57,32,1,12,56,130,163,

%T 120,64,1,14,79,232,386,382,247,128,1,16,106,378,794,1024,848,502,256,

%U 1,18,137,576,1471,2380,2510,1816,1013,512,1,20,172,834,2517,4944,6476,5812,3797,2036,1024

%N Reversal of the binomial transform of the Whitney triangle A004070 (see A131250), triangle read by rows, T(n,k) for 0 <= k <= n.

%C Reversal of the Riordan array (1/(1-2x), x/(1-x)^2), see A131250. Row sums are A061667 and diagonal sums of A131250 are A045623. The n-th row elements correspond to the end elements of the 2n-th row of the Whitney triangle A004070. A131250 corresponds to the product of Pascal's triangle and the Whitney triangle.

%F T(n, k) = Sum_{i=0..n} binomial(n+k, i-k).

%F T(n, k) = T(n-1,k)+2*T(n-1,k-1)-T(n-2,k-2), T(0,0)=1, T(1,0)=1, T(1,1)=2, T(n,k)=0 if k<0 or if k>n. - _Philippe Deléham_, Jan 11 2014

%F T(n, k) = binomial(2*n-k, k)*hypergeom([1, 1, -k], [1, 1 - 2*k + 2*n], -1). - _Peter Luschny_, Oct 28 2018

%e Triangle begins:

%e 1;

%e 1, 2;

%e 1, 4, 4;

%e 1, 6, 11, 8;

%e 1, 8, 22, 26, 16;

%e 1, 10, 37, 64, 57, 32;

%e 1, 12, 56, 130, 163, 120, 64;

%e 1, 14, 79, 232, 386, 382, 247, 128;

%p T := (n,k) -> binomial(2*n-k, k)*hypergeom([1, 1, -k], [1, 1-2*k+2*n], -1):

%p for n from 0 to 8 do seq(simplify(T(n, k)), k=0..n) od; # _Peter Luschny_, Oct 28 2018

%t T[_, 0] = 1; T[n_, n_] := 2^n; T[n_, k_] /; 0 < k < n := T[n, k] = T[n - 1, k] + 2 T[n - 1, k - 1] - T[n - 2, k - 2]; T[_, _] = 0;

%t Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* _Jean-François Alcover_, Jun 19 2019 *)

%Y Row sums are A061667.

%Y Cf. A004070, A097761, A131250.

%K easy,nonn,tabl

%O 0,3

%A _Paul Barry_, Aug 23 2004

%E Definition and comments corrected by _Philippe Deléham_, Jan 11 2014