login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201555
a(n) = C(2*n^2,n^2) = A000984(n^2), where A000984 is the central binomial coefficients.
9
1, 2, 70, 48620, 601080390, 126410606437752, 442512540276836779204, 25477612258980856902730428600, 23951146041928082866135587776380551750, 365907784099042279561985786395502921046971688680, 90548514656103281165404177077484163874504589675413336841320
OFFSET
0,2
COMMENTS
Central coefficients of triangle A228832.
LINKS
R. Oblath, Congruences with binomial coefficients, Proceedings of the Indian Academy of Science, Section A, Vol. 1 No. 6, 383-386
FORMULA
L.g.f.: ignoring initial term, equals the logarithmic derivative of A201556.
a(n) = (2*n^2)! / (n^2)!^2.
a(n) = Sum_{k=0..n^2} binomial(n^2,k)^2.
For primes p >= 5: a(p) == 2 (mod p^3), Oblath, Corollary II; a(p) == binomial(2*p,p) (mod p^6) - see Mestrovic, Section 5, equation 31. - Peter Bala, Dec 28 2014
A007814(a(n)) = A159918(n). - Antti Karttunen, Apr 27 2017, based on Vladimir Shevelev's Jul 20 2009 formula in A000984.
EXAMPLE
L.g.f.: L(x) = 2*x + 70*x^2/2 + 48620*x^3/3 + 601080390*x^4/4 + ...
where exponentiation equals the g.f. of A201556:
exp(L(x)) = 1 + 2*x + 37*x^2 + 16278*x^3 + 150303194*x^4 + ... + A201556(n)*x^n + ...
MATHEMATICA
Table[Binomial[2n^2, n^2], {n, 0, 10}] (* Harvey P. Dale, Dec 10 2011 *)
PROG
(PARI) a(n) = binomial(2*n^2, n^2)
(Python)
from math import comb
def A201555(n): return comb((m:=n**2)<<1, m) # Chai Wah Wu, Jul 08 2022
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 02 2011
STATUS
approved