login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159918
Number of ones in binary representation of n^2.
38
0, 1, 1, 2, 1, 3, 2, 3, 1, 3, 3, 5, 2, 4, 3, 4, 1, 3, 3, 5, 3, 6, 5, 3, 2, 5, 4, 6, 3, 5, 4, 5, 1, 3, 3, 5, 3, 6, 5, 7, 3, 5, 6, 7, 5, 8, 3, 4, 2, 5, 5, 5, 4, 8, 6, 7, 3, 6, 5, 7, 4, 6, 5, 6, 1, 3, 3, 5, 3, 6, 5, 7, 3, 6, 6, 9, 5, 7, 7, 5, 3, 6, 5, 8, 6, 7, 7, 7, 5, 9, 8, 5, 3, 6, 4, 5, 2, 5, 5, 6, 5, 9, 5, 7, 4
OFFSET
0,4
COMMENTS
The binary weight (A000120) of n^2.
a(n) = 0 iff n = 0. a(n) = 1 iff n = 2^k for some k >= 0. a(n) = 2 iff n = 3*2^k for some k >= 0. Szalay proves that a(n) = 3 iff n = 7*2^k, 23*2^k, or 2^a + 2^b for k >= 0 and a > b >= 0. It seems that a(n) = 4 iff n = 13*2^k, 15*2^k, 47*2^k, or 111*2^k but this has not been proven! Any other n with a(n) = 4 are greater than 10^50, and there are finitely many odd solutions. - Charles R Greathouse IV, Jan 20 2022
REFERENCES
L. Szalay, The equations 2^n ± 2^m ± 2^l = z^2, Indagationes Mathematicae (N.S.) 13, no. 1 (2002), pp. 131-142.
LINKS
Bernt Lindström, On the binary digits of a power, Journal of Number Theory, Volume 65, Issue 2, August 1997, Pages 321-324.
Nick MacKinnon, Problems and Solutions #12140, The American Mathematical Monthly, 126:9 (2019), 850.
K. B. Stolarsky, The binary digits of a power, Proc. Amer. Math. Soc. 71 (1978), 1-5.
FORMULA
a(n) = A000120(A000290(n)); a(A077436(n)) = A000120(A077436(n)).
Lindström shows that lim sup wt(m^2)/log_2 m = 2. - N. J. A. Sloane, Oct 11 2013
a(n) = [x^(n^2)] (1/(1 - x))*Sum_{k>=0} x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Mar 27 2018
MAPLE
A159918 := proc(n) return add(b, b=convert(n^2, base, 2)): end: seq(A159918(n), n=0..100); # Nathaniel Johnston, Jun 23 2011
MATHEMATICA
a[n_] := Total[IntegerDigits[n^2, 2]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 27 2021 *)
PROG
(Haskell)
a159918 = a000120 . a000290 -- Reinhard Zumkeller, Oct 12 2013
(Python)
def A159918(n):
return bin(n*n).count('1') # Chai Wah Wu, Sep 03 2014
(PARI) a(n)=hammingweight(n^2) \\ Charles R Greathouse IV, Aug 06 2015
CROSSREFS
Sequence in context: A066376 A151682 A318928 * A349552 A278573 A108663
KEYWORD
nonn,base,easy
AUTHOR
Reinhard Zumkeller, Apr 25 2009
STATUS
approved