The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159921 Numerator of Hermite(n, 18/23). 1
 1, 36, 238, -67608, -3189300, 171302256, 23038278216, -258048705312, -179911241858928, -4292680465160640, 1558578348234929376, 101525379857857028736, -14483821141875255043392, -1810383783782862018394368, 134036659769169225204616320, 31640724357081844323823566336 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..385 FORMULA From G. C. Greubel, Jul 16 2018: (Start) a(n) = 23^n * Hermite(n, 18/23). E.g.f.: exp(36*x - 529*x^2). a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(36/23)^(n-2*k)/(k!*(n-2*k)!)). (End) EXAMPLE Numerators of 1, 36/23, 238/529, -67608/12167, -3189300/279841, ... MATHEMATICA Numerator[Table[HermiteH[n, 18/23], {n, 0, 30}]] (* or *) Table[23^n* HermiteH[n, 18/23], {n, 0, 30}] (* G. C. Greubel, Jul 16 2018 *) PROG (PARI) a(n)=numerator(polhermite(n, 18/23)) \\ Charles R Greathouse IV, Jan 29 2016 (PARI) x='x+O('x^30); Vec(serlaplace(exp(36*x - 529*x^2))) \\ G. C. Greubel, Jul 16 2018 (MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(36/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 16 2018 CROSSREFS Cf. A009967 (denominators). Sequence in context: A264522 A297656 A268794 * A326347 A129149 A223558 Adjacent sequences:  A159918 A159919 A159920 * A159922 A159923 A159924 KEYWORD sign,frac AUTHOR N. J. A. Sloane, Nov 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 11:00 EDT 2020. Contains 333083 sequences. (Running on oeis4.)