login
A159920
Sums of the antidiagonals of Sundaram's sieve (A159919).
6
4, 14, 32, 60, 100, 154, 224, 312, 420, 550, 704, 884, 1092, 1330, 1600, 1904, 2244, 2622, 3040, 3500, 4004, 4554, 5152, 5800, 6500, 7254, 8064, 8932, 9860, 10850, 11904, 13024, 14212, 15470, 16800, 18204, 19684, 21242, 22880, 24600, 26404
OFFSET
2,1
COMMENTS
For every n >= 2, a(n) is the sum of numbers in the (n-1)-th antidiagonal of the Sundaram sieve. (It is not clear why the offset was set to 2 rather than 1.) Thus, if T(j, k) is the element in row j and column k of the Sundaram sieve, we have a(n) = Sum_{i = 1..n-1} T(i, n-i) = Sum_{i = 1..n-1} (2*i*(n-i) + i + (n-i)) = (n - 1)*n*(n + 4)/3 for the sum of the numbers in the (n-1)-th antidiagonal. - Petros Hadjicostas, Jun 19 2019
LINKS
Andrew Baxter, Sundaram's Sieve.
Julian Havil, Sundaram's Sieve, Plus Magazine, March 2009.
New Zealand Maths, Newletter 18, October 2002.
Wikipedia, Sundaram's Sieve.
FORMULA
a(n) = (n - 1)*n*(n + 4)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 2*A005581(n), n > 1.
a(n) = Sum_{i=1..n-1} i*(i + 3). - Wesley Ivan Hurt, Oct 19 2013
From G. C. Greubel, Oct 03 2022: (Start)
G.f.: 2*x^2*(2 - x)/(1-x)^4.
E.g.f.: (1/3)*x^2*(6 + x)*exp(x). (End)
EXAMPLE
For n = 5, (4*5*9)/3 = 60. Indeed, T(1, 4) + T(2, 3) + T(3, 2) + T(4, 1) = 13 + 17 + 17 + 13 = 60 for the sum of the terms in the 4th antidiagonal of the Sundaram sieve.
MAPLE
A159920:=n->n*(n-1)*(n+4)/3; seq(A159920(k), k=2..100); # Wesley Ivan Hurt, Oct 19 2013
MATHEMATICA
Table[(n-1)*n*(n+4)/3, {n, 2, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *)
LinearRecurrence[{4, -6, 4, -1}, {4, 14, 32, 60}, 61] (* Harvey P. Dale, Apr 23 2011 *)
PROG
(Magma) [n*(n-1)*(n+4)/3: n in [2..60]]; // G. C. Greubel, Oct 03 2022
(SageMath) [n*(n-1)*(n+4)/3 for n in range(2, 60)] # G. C. Greubel, Oct 03 2022
CROSSREFS
Sequence in context: A001740 A129395 A023539 * A036486 A023627 A023649
KEYWORD
nonn,easy
AUTHOR
Russell Walsmith, Apr 26 2009
STATUS
approved