The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159920 Sums of the antidiagonals of Sundaram's sieve (A159919). 5
 4, 14, 32, 60, 100, 154, 224, 312, 420, 550, 704, 884, 1092, 1330, 1600, 1904, 2244, 2622, 3040, 3500, 4004, 4554, 5152, 5800, 6500, 7254, 8064, 8932, 9860, 10850, 11904, 13024, 14212, 15470, 16800, 18204, 19684, 21242, 22880, 24600, 26404 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS For every n >= 2, a(n) is the sum of numbers in the (n-1)-th antidiagonal of the Sundaram sieve. (It is not clear why the offset was set to 2 rather than 1.) Thus, if T[j, k] is the element in row j and column k of the Sundaram sieve, we have a(n) = Sum_{i = 1..n-1} T[i, n-i] = Sum_{i = 1..n-1} (2*i*(n-i) + i + (n-i)) = (n - 1)*n*(n + 4)/3 for the sum of the numbers in the (n-1)-th antidiagonal. - Petros Hadjicostas, Jun 19 2019 LINKS Andrew Baxter, Sundaram's Sieve. Julian Havil, Sundaram's Sieve, Plus Magazine, March 2009. New Zealand Maths, Newletter 18, October 2002. Wikipedia, Sundaram's Sieve. Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1). FORMULA a(n) = (n - 1)*n*(n + 4)/3 for n > 1. a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). a(n) = 2*A005581(n), n > 1. a(n) = Sum_{i=1..n-1} i*(i + 3). - Wesley Ivan Hurt, Oct 19 2013 EXAMPLE For n = 5, (4*5*9)/3 = 60. Indeed, T[1, 4] + T[2, 3] + T[3, 2] + T[4, 1] = 13 + 17 + 17 + 13 = 60 for the sum of the terms in the 4th antidiagonal of the Sundaram sieve. MAPLE A159920:=n->n*(n-1)*(n+4)/3; seq(A159920(k), k=2..100); # Wesley Ivan Hurt, Oct 19 2013 MATHEMATICA a[n_]:=(n-1)*n*(n+4)/3; Table[a[n], {n, 2, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *) LinearRecurrence[{4, -6, 4, -1}, {4, 14, 32, 60}, 50]  (* Harvey P. Dale, Apr 23 2011 *) CROSSREFS Cf. A005581, A159919. Sequence in context: A001740 A129395 A023539 * A036486 A023627 A023649 Adjacent sequences:  A159917 A159918 A159919 * A159921 A159922 A159923 KEYWORD nonn,easy AUTHOR Russell Walsmith, Apr 26 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 3 23:48 EDT 2020. Contains 333207 sequences. (Running on oeis4.)