login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159920
Sums of the antidiagonals of Sundaram's sieve (A159919).
6
4, 14, 32, 60, 100, 154, 224, 312, 420, 550, 704, 884, 1092, 1330, 1600, 1904, 2244, 2622, 3040, 3500, 4004, 4554, 5152, 5800, 6500, 7254, 8064, 8932, 9860, 10850, 11904, 13024, 14212, 15470, 16800, 18204, 19684, 21242, 22880, 24600, 26404
OFFSET
2,1
COMMENTS
For every n >= 2, a(n) is the sum of numbers in the (n-1)-th antidiagonal of the Sundaram sieve. (It is not clear why the offset was set to 2 rather than 1.) Thus, if T(j, k) is the element in row j and column k of the Sundaram sieve, we have a(n) = Sum_{i = 1..n-1} T(i, n-i) = Sum_{i = 1..n-1} (2*i*(n-i) + i + (n-i)) = (n - 1)*n*(n + 4)/3 for the sum of the numbers in the (n-1)-th antidiagonal. - Petros Hadjicostas, Jun 19 2019
LINKS
Andrew Baxter, Sundaram's Sieve.
Julian Havil, Sundaram's Sieve, Plus Magazine, March 2009.
New Zealand Maths, Newletter 18, October 2002.
Wikipedia, Sundaram's Sieve.
FORMULA
a(n) = (n - 1)*n*(n + 4)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 2*A005581(n), n > 1.
a(n) = Sum_{i=1..n-1} i*(i + 3). - Wesley Ivan Hurt, Oct 19 2013
From G. C. Greubel, Oct 03 2022: (Start)
G.f.: 2*x^2*(2 - x)/(1-x)^4.
E.g.f.: (1/3)*x^2*(6 + x)*exp(x). (End)
EXAMPLE
For n = 5, (4*5*9)/3 = 60. Indeed, T(1, 4) + T(2, 3) + T(3, 2) + T(4, 1) = 13 + 17 + 17 + 13 = 60 for the sum of the terms in the 4th antidiagonal of the Sundaram sieve.
MAPLE
A159920:=n->n*(n-1)*(n+4)/3; seq(A159920(k), k=2..100); # Wesley Ivan Hurt, Oct 19 2013
MATHEMATICA
Table[(n-1)*n*(n+4)/3, {n, 2, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *)
LinearRecurrence[{4, -6, 4, -1}, {4, 14, 32, 60}, 61] (* Harvey P. Dale, Apr 23 2011 *)
PROG
(Magma) [n*(n-1)*(n+4)/3: n in [2..60]]; // G. C. Greubel, Oct 03 2022
(SageMath) [n*(n-1)*(n+4)/3 for n in range(2, 60)] # G. C. Greubel, Oct 03 2022
CROSSREFS
Sequence in context: A001740 A129395 A023539 * A036486 A023627 A023649
KEYWORD
nonn,easy
AUTHOR
Russell Walsmith, Apr 26 2009
STATUS
approved