login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005581 (n-1)*n*(n+4)/6.
(Formerly M1744)
29
0, 0, 2, 7, 16, 30, 50, 77, 112, 156, 210, 275, 352, 442, 546, 665, 800, 952, 1122, 1311, 1520, 1750, 2002, 2277, 2576, 2900, 3250, 3627, 4032, 4466, 4930, 5425, 5952, 6512, 7106, 7735, 8400, 9102, 9842, 10621, 11440, 12300, 13202, 14147, 15136, 16170 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A class of Boolean functions of n variables and rank 2.

Also, number of inscribable triangles within a (n+4)-gon sharing with them its vertices but not its sides. - Lekraj Beedassy, Nov 14 2003

a(n) = A111808(n,3) for n>2. - Reinhard Zumkeller, Aug 17 2005

G.f.: (x^2)*(2-x)/(1-x)^4.

If X is an n-set and Y a fixed 2-subset of X then a(n-2) is equal to the number of (n-3)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007

The sequence starting with offset 2 = binomial transform of [2, 5, 4, 1, 0, 0, 0,...]. [From Gary W. Adamson, Mar 20 2009]

Let I=I_n be the nXn identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then, for n>=4, a(n-4) is the number of (0,1) nXn matrices A<=P^(-1)+I+P having exactly two 1's in every row and column with perA=8. [From Vladimir Shevelev, Apr 12 2010]

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.

F. T. Howard and Curtis Cooper, Some identities for r-Fibonacci numbers, http://www.math-cs.ucmo.edu/~curtisc/articles/howardcooper/genfib4.pdf.

V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 177.

A. McLeod and W. O. J. Moser, Counting cyclic binary strings, Math. Mag., 80 (No. 1, 2007), 29-37.

V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19. [From Vladimir Shevelev, Apr 12 2010]

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #51 (the case k=3) (First published: San Francisco: Holden-Day, Inc., 1964)

LINKS

T. D. Noe, Table of n, a(n) for n=0..1000

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

Milan Janjic, Two Enumerative Functions

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube.

Eric Weisstein's World of Mathematics, Trinomial Coefficient

Index entries for sequences related to Boolean functions

FORMULA

G.f.: (x^2)*(2-x)/(1-x)^4.

a(n)=binomial(n+2, n-1)+binomial(n+1, n-1).

Convolution of {1, 2, 3, ...} with {2, 3, 4, ...} - Jon Perry, Jun 25 2003

a(n+2)=2*te(n)-te(n-1), e.g. a(5)=2*te(3)-te(2)=2*20-10=30, where te(n) are the tetrahedral numbers A000292 - Jon Perry, Jul 23 2003

a(n) is the coefficient of x^3 in the expansion of (1+x+x^2)^n. For example, a(1)=0 since (1+x+x^2)^1=1+x+x^2. - Peter C. Heinig (algorithms(AT)gmx.de), Apr 09 2007

E.g.f.: (x^2 +x^3/6)* exp(x). - MIchael Somos Apr 13 2007

a(n) = C(4+n,3)-(n+4)*(n+1), since C(4+n,3) = number of all triangles in (n+4)-gon, and (n+4)*(n+1)=number of triangles with at least one of the edges included. Example: n=0,in a square, all 4 possible triangles include some of the square's edges and C(4+n,3)-(n+4)*(n+1)=4-4*1=0 = number of other triangles = a(0). - Toby Gottfried, Nov 12 2011

a(n) = 2*binomial(n,2) + binomial(n,3). - Vladimir Shevelev and Peter Moses, Jun 22 2012

a(0)=0, a(1)=0, a(2)=2, a(3)=7, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Sep 22 2012

EXAMPLE

In hexagon ABCDEF, the "interior" triangles are ACE and BDF, and a(6-4)=a(2)=2. - Toby Gottfried, Nov 12 2011

MAPLE

A005581 := n->(n-1)*n*(n+4)/6;

a:=n->sum ((j+3)*j/2, j=0..n): seq(a(n), n=-1..44); - Zerinvary Lajos, Dec 17 2006

seq((n+3)*binomial(n, 3)/n, n=1..46); - Zerinvary Lajos, Feb 28 2007

A005581:=-(-2+z)/(z-1)**4; [Simon Plouffe in his 1992 dissertation.]

seq(sum(binomial(n, m), m=1..3)+n^2, n=-1..44); - Zerinvary Lajos, Jun 19 2008

MATHEMATICA

Table[(n - 1)*n*(n + 4)/6, {n, 0, 40}] - Stefan Steinerberger, Apr 10 2006

LinearRecurrence[{4, -6, 4, -1}, {0, 0, 2, 7}, 50] (* Harvey P. Dale, Sep 22 2012 *)

PROG

(PARI) {a(n)= n* (n+4)* (n-1)/6} /* MIchael Somos Apr 13 2007 */

(Maxima) A005581(n):=(n-1)*n*(n+4)/6$ makelist(A005581(n), n, 0, 20); /* Martin Ettl, Dec 18 2012 */

CROSSREFS

Cf. A005582. a(n)= A027907(n, 3), n >= 0 (fourth column of trinomial coefficients).

Cf. A000292.

A005586(n)= -a(-4-n).

A176222 A000211 A052928 A128209 [From Vladimir Shevelev, Apr 12 2010]

Sequence in context: A070169 A162420 A130883 * A064468 A225311 A074470

Adjacent sequences:  A005578 A005579 A005580 * A005582 A005583 A005584

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Jun 01 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 16 21:07 EDT 2014. Contains 240627 sequences.