login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360284
Least integer nu such that the first zero of the Bessel j-function of index nu is at least nu + n.
1
0, 2, 7, 16, 29, 48, 73, 106, 148, 199, 260, 333, 417, 515, 627, 754, 897, 1057, 1234, 1431, 1647, 1884, 2142, 2423, 2727, 3056, 3410, 3791, 4198, 4634, 5099, 5594, 6120, 6678, 7268, 7893, 8552, 9247, 9979, 10748, 11555, 12402, 13290
OFFSET
2,2
COMMENTS
Tricomi proved that the first zero of j_nu occurs at nu + a*nu^(1/3) + b*nu^(-1/3) + O(1/nu). The PARI program below uses an estimate with a = 1.85575708087 and b = 1.
REFERENCES
Francesco Tricomi, Sulle funzioni di Bellel di ordine e argomento pressochè uguali, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 83:3-20 (1949).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 2..100
Árpád Elbert and Andrea Laforgia, An asymptotic relation for the zeros of Bessel functions, Journal of Mathematical Analysis and Applications, Volume 98, Issue 2 (February 1984), pp. 502-511.
Roger C. McCann, Lower bounds for the zeros of Bessel functions, Proc. Amer. Math. Soc. 64 (1977), pp. 101-103.
FORMULA
Tricomi (cited in Elbert & Laforgia and McCann) proved that a(n) ~ kn^3. It seems that k is approximately 0.15647199543.
PROG
(PARI) esta(n)=my(a=1.85575708087); ((n+sqrt(n^2-4*a))/2/a)^3
a(n)=if(n==2, return(0)); my(k=esta(n)\1, t=besseljzero(k)-k); if(t<n, while(besseljzero(k++)-k<n, ); k, while(besseljzero(k--)-k>=n, ); k+1)
CROSSREFS
Sequence in context: A130883 A375284 A375282 * A005581 A375279 A064468
KEYWORD
nonn
AUTHOR
STATUS
approved