login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052928 The even numbers repeated. 40
0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68, 68, 70, 70, 72, 72 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) is also the binary rank of the complete graph K(n) [Alessandro Cosentino (cosenal(AT)gmail.com), Feb 07 2009]

Its ordinal transform is A000034. - Paolo P. Lava, Jun 25 2009

Let I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then,for n>=6, a(n) is the number of (0,1) n X n matrices A <= P^(-1)+I+P having exactly two 1's in every row and column with perA=2. - Vladimir Shevelev, Apr 12 2010

a(n+2) is the number of symmetry-allowed, linearly-independent terms at n-th order in the series expansion of the (E+A)xe vibronic perturbation matrix, H(Q) (cf. Eisfeld & Viel). - Bradley Klee, Jul 21 2015

The arithmetic function v_2(n,1) as defined in A289187. - Robert Price, Aug 22 2017

For n > 1, also the chromatic number of the n X n white bishop graph. - Eric W. Weisstein, Nov 17 2017

For n > 2, also the maximum vertex degree of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 23 2018

REFERENCES

C. D. Godsil and G. Royle, Algebraic Graph Theory, Springer, 2001, page 181. - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 07 2009

V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

W. Eisfeld and A. Viel, Higher order (A+E)xe pseudo-Jahn-Teller coupling, J. Chem. Phys., 122, 204317 (2005).

Nathan Fox, Finding Linear-Recurrent Solutions to Hofstadter-Like Recurrences Using Symbolic Computation, arXiv:1609.06342 [math.NT], 2016.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 914

J. Sondow and E. W. Weisstein, MathWorld: Wallis Formula

Eric Weisstein's World of Mathematics, Chromatic Number

Eric Weisstein's World of Mathematics, Legendre-Gauss Quadrature

Eric Weisstein's World of Mathematics, Maximum Vertex Degree

Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph

Eric Weisstein's World of Mathematics, Random Matrix

Eric Weisstein's World of Mathematics, White Bishop Graph

Index entries for linear recurrences with constant coefficients, signature (1,1,-1)

Index entries for Molien series

FORMULA

a(n) = 2*floor(n/2).

G.f.: 2*x^2/((-1+x)^2*(1+x)).

a(n) + a(n+1) + 2 - 2*n = 0.

a(n) = n - 1/2 + (-1)^n/2.

a(n) = n + Sum_{k=1..n} (-1)^k. - William A. Tedeschi, Mar 20 2008

a(n) = a(n-1) + a(n-2) - a(n-3). - R. J. Mathar, Feb 19 2010

a(n) = |A123684(n) - A064455(n)| = A032766(n) - A008619(n-1). - Jaroslav Krizek, Mar 22 2011

For n>0 a(n) = floor(sqrt(n^2+(-1)^n)). - Francesco Daddi, Aug 02 2011

a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=0 and b(k)=2^k for k>0. - Philippe Deléham, Oct 19 2011

a(n) = A109613(n) - 1. - M. F. Hasler, Oct 22 2012

a(n) = n - (n mod 2). - Wesley Ivan Hurt, Jun 29 2013

a(n) = a(a(n-1)) + a(n-a(n-1)) for n>2. - Nathan Fox, Jul 24 2016

a(n) = 2*A004526(n). - Filip Zaludek, Oct 28 2016

E.g.f.: x*exp(x) - sinh(x). - Ilya Gutkovskiy, Oct 28 2016

MAPLE

spec := [S, {S=Union(Sequence(Prod(Z, Z)), Prod(Sequence(Z), Sequence(Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);

MATHEMATICA

Flatten[Table[{2n, 2n}, {n, 0, 39}]] (* Alonso del Arte, Jun 24 2012 *)

PROG

(PARI) a(n)=n\2*2 \\ Charles R Greathouse IV, Nov 20 2011

(MAGMA) [2*Floor(n/2) : n in [0..50]]; // Wesley Ivan Hurt, Sep 13 2014

(Haskell)

a052928 = (* 2) . flip div 2

a052928_list = 0 : 0 : map (+ 2) a052928_list

-- Reinhard Zumkeller, Jun 20 2015

CROSSREFS

Cf. A000034, A004001, A008619, A032766, A064455, A109613, A123684, A289187.

First differences: A010673; partial sums: A007590; partial sums of partial sums: A212964(n+1).

Complement of A109613 with respect to universe A004526. - Guenther Schrack, Dec 07 2017

Sequence in context: A161764 A293706 A131055 * A137501 A285999 A005186

Adjacent sequences:  A052925 A052926 A052927 * A052929 A052930 A052931

KEYWORD

nonn,easy

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

More terms from James A. Sellers, Jun 05 2000

Removed duplicate of recurrence; corrected original recurrence and g.f. against offset - R. J. Mathar, Feb 19 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 24 02:35 EDT 2018. Contains 302983 sequences. (Running on oeis4.)