OFFSET
0,4
COMMENTS
For a guide to related sequences, see A212959.
Magic numbers of nucleons in a biaxially deformed nucleus at oscillator ratio 1:2 (oblate ellipsoid) under the simple harmonic oscillator model. - Jess Tauber, May 14 2013
a(n) is the number of Sidon subsets of {1,...,n+1} of size 3. - Carl Najafi, Apr 27 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Jean-Luc Baril, Alexander Burstein, and Sergey Kirgizov, Pattern statistics in faro words and permutations, arXiv:2010.06270 [math.CO], 2020.
Ikuko Hamamoto, One-particle motion in nuclear many-body problem, Division of Mathematical Physics, LTH, University of Lund, Sweden.
Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
FORMULA
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5).
G.f.: f(x)/g(x), where f(x)=2*x^3 and g(x)=(1+x)(1-x)^4.
a(n+3) = 2*A002623(n).
a(n) = Sum_{k=0..n} floor((k-1)^2/2). - Enrique Pérez Herrero, Dec 28 2013
a(n) = Sum_{i=1..n} floor(i^2/2) - 2*floor(i/2). - Wesley Ivan Hurt, Jul 23 2014
a(n) = (2*n-1)*(2*n^2-2*n-3)/24 - (-1)^n/8. - Robert Israel, Jul 23 2014
E.g.f.: (x*(2*x^2 + 3*x - 3)*cosh(x) + (2*x^3 + 3*x^2 - 3*x + 3)*sinh(x))/12. - Stefano Spezia, Jul 06 2021
MAPLE
A212964:=n->add(floor(i^2/2) - 2*floor(i/2), i=1..n): seq(A212964(n), n=0..50); # Wesley Ivan Hurt, Jul 23 2014
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] < Abs[x - y] < Abs[y - w], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 45]] (* A212964 *)
m/2 (* essentially A002623 *)
CoefficientList[Series[2 x^3/((1 + x) (1 - x)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Jul 25 2014 *)
PROG
(Magma) [(2*n-1)*(2*n^2-2*n-3)/24 - (-1)^n/8: n in [0..50]]; // Vincenzo Librandi, Jul 25 2014
(PARI) a(n) = (2*n-1)*(2*n^2-2*n-3)/24 - (-1)^n/8;
vector (100, n, a(n-1)) \\ Altug Alkan, Sep 30 2015
CROSSREFS
First differences: A007590, is first differences of 2*A001752(n-4) for n > 3; partial sums: 2*A001752(n-3) for n > 2, is partial sums of A007590(n-1) for n > 0. - Guenther Schrack, Mar 19 2018
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 02 2012
STATUS
approved