login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212961
G.f. satisfies: A(x) = Sum_{n>=0} x^n * ( (A(x)^n + A(-x)^n)/2 )^n.
1
1, 1, 1, 2, 7, 26, 88, 389, 1617, 7808, 34783, 184426, 878705, 4960662, 25295649, 152048803, 820978097, 5254469132, 30147771222, 204763245407, 1249116889562, 9012614482274, 58336358284152, 446435253834922, 3064458931156669, 24788742473819564, 179927874744752672
OFFSET
0,4
FORMULA
G.f.: Sum_{n>=0} (x/2)^n * A(x)^(n^2) * Sum_{k=0..n} binomial(n,k) * (A(-x)/A(x))^(n*k).
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 26*x^5 + 88*x^6 + 389*x^7 +...
where
A(x) = 1 + x*(A(x)+A(-x))/2 + x^2*(A(x)^2+A(-x)^2)^2/2^2 + x^3*(A(x)^3+A(-x)^3)^3/2^3 + x^4*(A(x)^4+A(-x)^4)^4/2^4 + x^5*(A(x)^5+A(-x)^5)^5/2^5 +...
Related expansions:
(A(x)+A(-x))/2 = 1 + x^2 + 7*x^4 + 88*x^6 + 1617*x^8 + 34783*x^10 +...
(A(x)^2+A(-x)^2)^2/2^2 = 1 + 6*x^2 + 47*x^4 + 606*x^6 + 10519*x^8 +...
(A(x)^3+A(-x)^3)^3/2^3 = 1 + 18*x^2 + 225*x^4 + 3144*x^6 + 53190*x^8 +...
(A(x)^4+A(-x)^4)^4/2^4 = 1 + 40*x^2 + 884*x^4 + 16208*x^6 + 298066*x^8 +...
(A(x)^5+A(-x)^5)^5/2^5 = 1 + 75*x^2 + 2850*x^4 + 77525*x^6 + 1802600*x^8 +...
(A(x)^6+A(-x)^6)^6/2^6 = 1 + 126*x^2 + 7767*x^4 + 321174*x^6 + 10371699*x^8 +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=sum(m=0, n, x^m*((A^m+subst(A^m, x, -x))/2)^m)); polcoeff(A, n)}
for(n=0, 21, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=sum(m=0, n, (x/2)^m*A^(m^2)*sum(k=0, m, binomial(m, k)*(subst(A, x, -x)/A)^(m*k)))); polcoeff(A, n)}
CROSSREFS
Cf. A217041.
Sequence in context: A220304 A363108 A300451 * A000697 A027417 A134063
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 21 2012
STATUS
approved