login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363108
Expansion of g.f. A(x) satisfying 3 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (3*A(x) + x^(n-2))^(n+1).
4
1, 2, 7, 26, 86, 318, 1165, 4312, 16318, 62020, 238165, 921980, 3590145, 14067188, 55399442, 219172028, 870736366, 3472155062, 13892694747, 55759406580, 224427809830, 905659181212, 3663475842865, 14851965523630, 60334690089827, 245572722474460, 1001306332164918
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.
(1) 3 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (3*A(x) + x^(n-2))^(n+1).
(2) 3 = Sum_{n=-oo..+oo} (-1)^n * x^(4*n) * (3*A(x) + x^(n-1))^n.
(3) 3*x^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 3*A(x)*x^(n+2))^(n-1).
(4) 3*x^2 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + 3*A(x)*x^(n+2))^(n+1).
(5) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (3*A(x) + x^(n-2))^n.
(6) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(3*n-2) * (3*A(x) + x^(n-2))^(n-1).
(7) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 3*A(x)*x^(n+2))^(n+1).
(8) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (3*A(x) + x^(n-1))^n.
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 3*A(x)*x^(n+2))^n.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 7*x^2 + 26*x^3 + 86*x^4 + 318*x^5 + 1165*x^6 + 4312*x^7 + 16318*x^8 + 62020*x^9 + 238165*x^10 + 921980*x^11 + 3590145*x^12 + ...
PROG
(PARI) {a(n) = my(A=[1], y=3); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(y - sum(n=-#A, #A, (-1)^n * x^(2*n) * (y*Ser(A) + x^(n-2))^(n+1) )/y, #A-1, x) ); A[n+1]}
for(n=0, 30, print1( a(n), ", "))
(PARI) {a(n) = my(A=1, y=3); for(i=1, n,
A = 1/sum(m=-n, n, (-1)^m * x^(2*m) * (y*A + x^(m-2) + x*O(x^n) )^m ) );
polcoeff( A, n, x)}
for(n=0, 30, print1( a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 24 2023
STATUS
approved