login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261332
Expansion of Product_{k>=1} (1+x^k)^(A002203(k)).
4
1, 2, 7, 26, 83, 278, 894, 2848, 8947, 27844, 85774, 262090, 794802, 2393874, 7165622, 21327412, 63146545, 186063052, 545783103, 1594268778, 4638773567, 13447773510, 38850645513, 111874844146, 321166890522, 919314145044, 2624198013317, 7471158542418
OFFSET
0,2
LINKS
Vaclav Kotesovec, Asymptotics of the Euler transform of Fibonacci numbers, arXiv:1508.01796 [math.CO], Aug 07 2015
Eric Weisstein's World of Mathematics, Pell Number
Wikipedia, Pell number
FORMULA
a(n) ~ (1+sqrt(2))^n * exp(-1 + 2^(-3/2) + 2*sqrt(n) + s) / (2 * sqrt(Pi) * n^(3/4)), where s = Sum_{k>=2} = 2*(-1)^(k+1)/(((1+sqrt(2))^k + 2/(1 + (1+sqrt(2))^k) - 3)*k) = -0.2731939535370496116124191192900280854879921353977...
MATHEMATICA
nmax=40; cPell[0]=2; cPell[1]=2; cPell[n_]:=cPell[n] = 2*cPell[n-1] + cPell[n-2]; CoefficientList[Series[Product[(1+x^k)^cPell[k], {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 15 2015
STATUS
approved