login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A261050
Expansion of Product_{k>=1} (1+x^k)^(Fibonacci(k)).
9
1, 1, 1, 3, 5, 10, 19, 36, 67, 127, 236, 438, 811, 1496, 2750, 5046, 9224, 16827, 30630, 55623, 100803, 182342, 329205, 593326, 1067591, 1917885, 3440207, 6162004, 11021921, 19688757, 35126020, 62590629, 111398910, 198044551, 351700332, 623918086, 1105715149
OFFSET
0,4
LINKS
Vaclav Kotesovec, Asymptotics of the Euler transform of Fibonacci numbers, arXiv:1508.01796 [math.CO], Aug 07 2015
FORMULA
a(n) ~ phi^n / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(-1/10 + 2*5^(-1/4)*sqrt(n) + s), where s = Sum_{k>=2} (-1)^(k+1) * phi^k / ((phi^(2*k) - phi^k - 1)*k) = -0.3237251774053525012502809827680337358578568068831886835557918847... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k - x^(2*k)))). - Ilya Gutkovskiy, May 29 2018
MAPLE
f:= proc(n) option remember; (<<1|1>, <1|0>>^n)[1, 2] end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(f(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 08 2015
MATHEMATICA
nmax=40; CoefficientList[Series[Product[(1+x^k)^Fibonacci[k], {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 08 2015
STATUS
approved