login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261053
Expansion of Product_{k>=1} (1+x^k)^(k^k).
7
1, 1, 4, 31, 289, 3495, 51268, 891152, 17926913, 409907600, 10499834497, 297793199060, 9262502810645, 313457634240463, 11464902463397642, 450646709610954343, 18943070964019019671, 847932498252050293971, 40266255926484893366914, 2021845081107882645459639
OFFSET
0,3
LINKS
FORMULA
a(n) ~ n^n * (1 + exp(-1)/n + (exp(-1)/2 + 4*exp(-2))/n^2).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^(d+1) ) * x^k/k). - Ilya Gutkovskiy, Nov 08 2018
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(i^i, j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 08 2015
MATHEMATICA
nmax=20; CoefficientList[Series[Product[(1+x^k)^(k^k), {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(PARI) m=20; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^(k^k))) \\ G. C. Greubel, Nov 08 2018
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1+x^k)^(k^k): k in [1..(m+2)]]))); // G. C. Greubel, Nov 08 2018
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 08 2015
STATUS
approved