login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261053 Expansion of Product_{k>=1} (1+x^k)^(k^k). 7
1, 1, 4, 31, 289, 3495, 51268, 891152, 17926913, 409907600, 10499834497, 297793199060, 9262502810645, 313457634240463, 11464902463397642, 450646709610954343, 18943070964019019671, 847932498252050293971, 40266255926484893366914, 2021845081107882645459639 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..385

FORMULA

a(n) ~ n^n * (1 + exp(-1)/n + (exp(-1)/2 + 4*exp(-2))/n^2).

G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^(d+1) ) * x^k/k). - Ilya Gutkovskiy, Nov 08 2018

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(binomial(i^i, j)*b(n-i*j, i-1), j=0..n/i)))

    end:

a:= n-> b(n$2):

seq(a(n), n=0..25);  # Alois P. Heinz, Aug 08 2015

MATHEMATICA

nmax=20; CoefficientList[Series[Product[(1+x^k)^(k^k), {k, 1, nmax}], {x, 0, nmax}], x]

PROG

(PARI) m=20; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^(k^k))) \\ G. C. Greubel, Nov 08 2018

(MAGMA) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1+x^k)^(k^k): k in [1..(m+2)]]))); // G. C. Greubel, Nov 08 2018

CROSSREFS

Cf. A023880, A261052, A026007, A027998, A248882, A102866, A256142.

Sequence in context: A039306 A265949 A081054 * A192407 A000858 A003436

Adjacent sequences:  A261050 A261051 A261052 * A261054 A261055 A261056

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Aug 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 19:50 EST 2020. Contains 331030 sequences. (Running on oeis4.)