login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081054 Crossing matchings: linear chord diagrams with 2n nodes and n arcs in which each arc crosses another arc. 1
1, 0, 1, 4, 31, 288, 3272, 43580, 666143, 11491696, 220875237, 4681264432, 108475235444, 2728591657920, 74051386322580, 2156865088819692, 67113404608820943, 2221948578439255200, 77990056655776149179 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
Olivia Beckwith, Victor Luo, Stephen J. Miller, Karen Shen, Nicholas Triantafillou, Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles, arXiv:1112.3719 [math.PR], 2011-2012.
Olivia Beckwith, Victor Luo, Stephen J. Miller, Karen Shen, Nicholas Triantafillou, Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles, Electronic Journal of Combinatorial Number Theory, Volume 15 (2015) #A21.
M. Klazar, Non-P-recursiveness of numbers of matchings or linear chord diagrams with many crossings, Advances in Appl. Math., Vol. 30 (2003), pp. 126-136.
Alexander Stoimenow, On enumeration of chord diagrams and asymptotics of Vassiliev invariants, Dissertation, Mathematik und Informatik, University of Berlin, 1998; see chapter 3.
FORMULA
The g.f. (a formal power series) F = 1 + x^2 + 4*x^3 + ... satisfies the differential equation F' = (-x^2*F^3 + F - 1)/(2*x^3*F^2 + 2*x^2*F).
a(n) is asymptotic to (2n)!/(e 2^n n!). In other words, the probability that a random matching is a crossing matching is asymptotic to 1/e; see Lemma 3.12 of Stoimenow reference. - Benoit Cloitre, Apr 18 2003; corrected by Dean Hickerson, Apr 21 2003
EXAMPLE
The 4 crossing matchings on nodes 1, 2, ..., 6 are {13, 25, 46}, {14, 25, 36}, {15, 24, 36} and {14, 26, 35}.
MATHEMATICA
a[n_] := a[n]=Module[{x, y, z, i}, y=Sum[a[i]x^i, {i, 0, n-1}]+z*x^n+O[x]^(n+1); Solve[D[y, x]==(-1+y-x^2y^3)/(2x^2y(1+x*y)), z][[1, 1, 2]]]
CROSSREFS
Sequence in context: A077615 A039306 A265949 * A261053 A192407 A000858
KEYWORD
easy,nonn
AUTHOR
Martin Klazar, Apr 15 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 05:43 EST 2023. Contains 367685 sequences. (Running on oeis4.)