login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261052
Expansion of Product_{k>=1} (1+x^k)^(k!).
5
1, 1, 2, 8, 31, 157, 915, 6213, 48240, 423398, 4147775, 44882107, 531564195, 6837784087, 94909482330, 1413561537884, 22482554909451, 380269771734265, 6815003300096013, 128992737080703803, 2571218642722865352, 53835084737513866662, 1181222084520177393143
OFFSET
0,3
COMMENTS
Weigh transform of the factorial numbers. - Alois P. Heinz, Jun 11 2018
LINKS
FORMULA
a(n) ~ n! * (1 + 1/n + 2/n^2 + 10/n^3 + 57/n^4 + 401/n^5 + 3382/n^6 + 33183/n^7 + 371600/n^8 + 4685547/n^9 + 65792453/n^10).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(i!, j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 08 2015
MATHEMATICA
nmax=25; CoefficientList[Series[Product[(1+x^k)^(k!), {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(PARI) seq(n)={Vec(exp(x*Ser(dirmul(vector(n, n, n!), -vector(n, n, (-1)^n/n)))))} \\ Andrew Howroyd, Jun 22 2018
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 08 2015
STATUS
approved