OFFSET
1,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..449
FORMULA
Product_{k>=1} (1+x^k)^a(k) = Sum_{n>=0} n! x^n.
a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for coefficients see A113869. - Vaclav Kotesovec, Nov 27 2020
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= proc(n) option remember; n! -b(n, n-1) end:
seq(a(n), n=1..30); # Alois P. Heinz, Jun 11 2018
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
a[n_] := a[n] = n! - b[n, n - 1];
Array[a, 30] (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz *)
PROG
(PARI) seq(n)={dirdiv(Vec(log(1+x*Ser(vector(n, n, n!)))), -vector(n, n, (-1)^n/n))} \\ Andrew Howroyd, Jun 22 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Nov 21 2009
STATUS
approved