login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212923
G.f. satisfies: A(x) = x^2 + Series_Reversion(x - x*A(x)).
3
1, 2, 4, 19, 111, 734, 5338, 41839, 348827, 3065255, 28199803, 270253498, 2687629926, 27652068276, 293627150268, 3211604669731, 36124424800797, 417294625090201, 4944772338009206, 60045368928594948, 746560751627818906, 9496624640844863631, 123507266690219103213
OFFSET
1,2
COMMENTS
This is an application of the more general formula given by:
if G(x) = Series_Reversion(x - x*F(x)), with F(0)=0, then
(1) G(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*F(x)^n/n!,
(2) G(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*F(x)^n/n! );
here F(x) = A(x) and G(x) = A(x) - x^2.
LINKS
FORMULA
G.f. A(x) also satisfies:
(1) A(x) = x+x^2 + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*A(x)^n/n!.
(2) A(x) = x^2 + x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*A(x)^n/n! ).
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 4*x^3 + 19*x^4 + 111*x^5 + 734*x^6 + 5338*x^7 +...
The series reversion of x - x*A(x) begins:
x + x^2 + 4*x^3 + 19*x^4 + 111*x^5 + 734*x^6 + 5338*x^7 +...
which equals A(x) - x^2.
The g.f. A(x) satisfies:
A(x) - x^2 = x + x*A(x) + d/dx x^2*A(x)^2/2! + d^2/dx^2 x^3*A(x)^3/3! + d^3/dx^3 x^4*A(x)^4/4! +...
log(A(x)/x - x) = A(x) + d/dx x*A(x)^2/2! + d^2/dx^2 x^2*A(x)^3/3! + d^3/dx^3 x^3*A(x)^4/4! +...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x^2+serreverse(x-x*A +x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(G=F); for(i=1, n, G=deriv(G)); G}
{a(n)=local(A=x+x^2); for(i=1, n, A=x+x^2+sum(m=1, n, Dx(m-1, x^m*A^m/m!)+x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(G=F); for(i=1, n, G=deriv(G)); G}
{a(n)=local(A=x+x^2); for(i=1, n, A=x^2+x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*A^m/m!)+x*O(x^n)))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 31 2012
STATUS
approved