login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212919
G.f. satisfies: A(x) = x^3 - x + Series_Reversion(x - x*A(x)).
5
1, 1, 1, 1, 5, 14, 29, 73, 229, 671, 1840, 5415, 16983, 52547, 161420, 511039, 1655598, 5372395, 17527912, 58076084, 194676024, 656160449, 2227549164, 7635624954, 26380508479, 91696805060, 320866223000, 1130833326852, 4010720214072, 14306769257286
OFFSET
3,5
COMMENTS
Compare the g.f. to a g.f. G(x) of A088714 (offset 1), which satisfies:
G(x) = Series_Reversion(x - x*G(x)),
G(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*G(x)^n/n!, and
G(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*G(x)^n/n! ).
LINKS
FORMULA
G.f. A(x) also satisfies:
(1) A(x) = x^3 + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*A(x)^n/n!.
(2) A(x) = x^3 - x + x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*A(x)^n/n! ).
EXAMPLE
G.f.: A(x) = x^3 + x^4 + x^5 + x^6 + 5*x^7 + 14*x^8 + 29*x^9 + 73*x^10 +...
The series reversion of x - x*A(x) begins:
x + x^4 + x^5 + x^6 + 5*x^7 + 14*x^8 + 29*x^9 + 73*x^10 + 229*x^11 +...
which equals x - x^3 + A(x).
The g.f. satisfies:
A(x) = x^3 + x*A(x) + d/dx x^2*A(x)^2/2! + d^2/dx^2 x^3*A(x)^3/3! + d^3/dx^3 x^4*A(x)^4/4! +...
log(1-x^2 + A(x)/x) = A(x) + d/dx x*A(x)^2/2! + d^2/dx^2 x^2*A(x)^3/3! + d^3/dx^3 x^3*A(x)^4/4! +...
Related expansions:
d/dx x^2*A(x)^2/2! = 4*x^7 + 9*x^8 + 15*x^9 + 22*x^10 + 78*x^11 + 260*x^12 +...
d^2/dx^2 x^3*A(x)^3/3! = 22*x^10 + 78*x^11 + 182*x^12 + 350*x^13 + 1080*x^14 +...
d^3/dx^3 x^4*A(x)^4/4! = 140*x^13 + 680*x^14 + 2040*x^15 + 4845*x^16 +...
d^4/dx^4 x^5*A(x)^5/5! = 969*x^16 + 5985*x^17 + 21945*x^18 + 61985*x^19 +...
...
d^(n-1)/dx^(n-1) x^n*A(x)^n/n! = A002293(n)*x^(3*n+1) +...
PROG
(PARI) {a(n)=local(A=x^3); for(i=1, n, A=x^3-x+serreverse(x-x*A +x*O(x^n))); polcoeff(A, n)}
for(n=3, 40, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(G=F); for(i=1, n, G=deriv(G)); G}
{a(n)=local(A=x^3); for(i=1, n, A=x^3+sum(m=1, n, Dx(m-1, x^m*A^m/m!)+x*O(x^n))); polcoeff(A, n)}
for(n=3, 40, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(G=F); for(i=1, n, G=deriv(G)); G}
{a(n)=local(A=x^3); for(i=1, n, A=x^3-x+x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*A^m/m!)+x*O(x^n)))); polcoeff(A, n)}
for(n=3, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A374929 A299291 A019262 * A280230 A076042 A231669
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 31 2012
STATUS
approved