login
A231669
a(n) = Sum_{i=0..n} digsum_5(i)^2, where digsum_5(i) = A053824(i).
4
0, 1, 5, 14, 30, 31, 35, 44, 60, 85, 89, 98, 114, 139, 175, 184, 200, 225, 261, 310, 326, 351, 387, 436, 500, 501, 505, 514, 530, 555, 559, 568, 584, 609, 645, 654, 670, 695, 731, 780, 796, 821, 857, 906, 970, 995, 1031, 1080, 1144, 1225, 1229, 1238, 1254, 1279, 1315, 1324, 1340, 1365, 1401, 1450, 1466, 1491, 1527, 1576, 1640, 1665, 1701, 1750, 1814, 1895, 1931, 1980
OFFSET
0,3
LINKS
Jean Coquet, Power sums of digital sums, J. Number Theory 22 (1986), no. 2, 161-176.
P. J. Grabner, P. Kirschenhofer, H. Prodinger, R. F. Tichy, On the moments of the sum-of-digits function, PDF, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
J.-L. Mauclaire, Leo Murata, On q-additive functions. I, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 6, 274-276.
J.-L. Mauclaire, Leo Murata, On q-additive functions. II, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 441-444.
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag. 41 1968 21-25.
PROG
(PARI) a(n) = sum(i=0, n, sumdigits(i, 5)^2); \\ Michel Marcus, Sep 20 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 13 2013
STATUS
approved