login
A261049
Expansion of Product_{k>=1} (1+x^k)^(p(k)), where p(k) is the partition function.
37
1, 1, 2, 5, 9, 19, 37, 71, 133, 252, 464, 851, 1547, 2787, 4985, 8862, 15639, 27446, 47909, 83168, 143691, 247109, 423082, 721360, 1225119, 2072762, 3494359, 5870717, 9830702, 16409939, 27309660, 45316753, 74986921, 123748430, 203686778, 334421510, 547735241
OFFSET
0,3
COMMENTS
Number of strict multiset partitions of integer partitions of n. Weigh transform of A000041. - Gus Wiseman, Oct 11 2018
LINKS
EXAMPLE
From Gus Wiseman, Oct 11 2018: (Start)
The a(1) = 1 through a(5) = 19 strict multiset partitions:
{{1}} {{2}} {{3}} {{4}} {{5}}
{{1,1}} {{1,2}} {{1,3}} {{1,4}}
{{1,1,1}} {{2,2}} {{2,3}}
{{1},{2}} {{1,1,2}} {{1,1,3}}
{{1},{1,1}} {{1},{3}} {{1,2,2}}
{{1,1,1,1}} {{1},{4}}
{{1},{1,2}} {{2},{3}}
{{2},{1,1}} {{1,1,1,2}}
{{1},{1,1,1}} {{1},{1,3}}
{{1},{2,2}}
{{2},{1,2}}
{{3},{1,1}}
{{1,1,1,1,1}}
{{1},{1,1,2}}
{{1,1},{1,2}}
{{2},{1,1,1}}
{{1},{1,1,1,1}}
{{1,1},{1,1,1}}
{{1},{2},{1,1}}
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(combinat[numbpart](i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 08 2015
MATHEMATICA
nmax=40; CoefficientList[Series[Product[(1+x^k)^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 08 2015
STATUS
approved