OFFSET
0,3
COMMENTS
Number of strict multiset partitions of integer partitions of n. Weigh transform of A000041. - Gus Wiseman, Oct 11 2018
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
R. Kaneiwa, An asymptotic formula for Cayley's double partition function p(2; n), Tokyo J. Math. 2, 137-158 (1979).
EXAMPLE
From Gus Wiseman, Oct 11 2018: (Start)
The a(1) = 1 through a(5) = 19 strict multiset partitions:
{{1}} {{2}} {{3}} {{4}} {{5}}
{{1,1}} {{1,2}} {{1,3}} {{1,4}}
{{1,1,1}} {{2,2}} {{2,3}}
{{1},{2}} {{1,1,2}} {{1,1,3}}
{{1},{1,1}} {{1},{3}} {{1,2,2}}
{{1,1,1,1}} {{1},{4}}
{{1},{1,2}} {{2},{3}}
{{2},{1,1}} {{1,1,1,2}}
{{1},{1,1,1}} {{1},{1,3}}
{{1},{2,2}}
{{2},{1,2}}
{{3},{1,1}}
{{1,1,1,1,1}}
{{1},{1,1,2}}
{{1,1},{1,2}}
{{2},{1,1,1}}
{{1},{1,1,1,1}}
{{1,1},{1,1,1}}
{{1},{2},{1,1}}
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(combinat[numbpart](i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 08 2015
MATHEMATICA
nmax=40; CoefficientList[Series[Product[(1+x^k)^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 08 2015
STATUS
approved