login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261049 Expansion of Product_{k>=1} (1+x^k)^(p(k)), where p(k) is the partition function. 27
1, 1, 2, 5, 9, 19, 37, 71, 133, 252, 464, 851, 1547, 2787, 4985, 8862, 15639, 27446, 47909, 83168, 143691, 247109, 423082, 721360, 1225119, 2072762, 3494359, 5870717, 9830702, 16409939, 27309660, 45316753, 74986921, 123748430, 203686778, 334421510, 547735241 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of strict multiset partitions of integer partitions of n. Weigh transform of A000041. - Gus Wiseman, Oct 11 2018

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

R. Kaneiwa, An asymptotic formula for Cayley's double partition function p(2; n), Tokyo J. Math. 2, 137-158 (1979).

EXAMPLE

From Gus Wiseman, Oct 11 2018: (Start)

The a(1) = 1 through a(5) = 19 strict multiset partitions:

  {{1}}  {{2}}    {{3}}        {{4}}          {{5}}

         {{1,1}}  {{1,2}}      {{1,3}}        {{1,4}}

                  {{1,1,1}}    {{2,2}}        {{2,3}}

                  {{1},{2}}    {{1,1,2}}      {{1,1,3}}

                  {{1},{1,1}}  {{1},{3}}      {{1,2,2}}

                               {{1,1,1,1}}    {{1},{4}}

                               {{1},{1,2}}    {{2},{3}}

                               {{2},{1,1}}    {{1,1,1,2}}

                               {{1},{1,1,1}}  {{1},{1,3}}

                                              {{1},{2,2}}

                                              {{2},{1,2}}

                                              {{3},{1,1}}

                                              {{1,1,1,1,1}}

                                              {{1},{1,1,2}}

                                              {{1,1},{1,2}}

                                              {{2},{1,1,1}}

                                              {{1},{1,1,1,1}}

                                              {{1,1},{1,1,1}}

                                              {{1},{2},{1,1}}

(End)

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(

      binomial(combinat[numbpart](i), j)*b(n-i*j, i-1), j=0..n/i)))

    end:

a:= n-> b(n$2):

seq(a(n), n=0..40);  # Alois P. Heinz, Aug 08 2015

MATHEMATICA

nmax=40; CoefficientList[Series[Product[(1+x^k)^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A000041, A001970, A026007, A027998, A248882, A102866, A256142.

Cf. A047968, A050342, A089259, A305551, A320328, A320330, A320331.

Sequence in context: A014495 A056326 A280247 * A122893 A178841 A214319

Adjacent sequences:  A261046 A261047 A261048 * A261050 A261051 A261052

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Aug 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 00:57 EST 2020. Contains 332028 sequences. (Running on oeis4.)