The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158943 INVERT transform of A027656: (1, 0, 2, 0, 3, 0, 4, 0, 5, ...). 6
 1, 1, 3, 5, 10, 19, 36, 69, 131, 250, 476, 907, 1728, 3292, 6272, 11949, 22765, 43371, 82629, 157422, 299915, 571388, 1088589, 2073943, 3951206, 7527704, 14341527, 27322992, 52054840, 99173120, 188941273, 359964521, 685792227, 1306548149 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Equals row sums of triangle A158945. Number of compositions of n into odd parts where there is 1 sort of part 1, 2 sorts of part 3, 3 sorts of part 5, ..., k sorts of part 2*k-1. - Joerg Arndt, Aug 04 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,2,0,-1). FORMULA INVERT transform of (1, 0, 2, 0, 3, 0, 4, ...); i.e., the natural numbers interleaved with zeros. From R. J. Mathar, Apr 02 2009: (Start) a(n) = a(n-1) + 2*a(n-2) - a(n-4). G.f.: x/(1 - x - 2*x^2 + x^4). (End) The sequence is the second INVERT transform of (1, -1, 3, -5, 10, -19, ...). - Gary W. Adamson, Jul 08 2019 EXAMPLE The INVERT transform of (1, N, ...) begins (1, (N+1), ...) so that we have (1, 1, ...) placed in ascending magnitude in the bottom row. In the top row we place an equal number of descending terms: (..., 0, 3, 0, 2, 0, 1). Take the dot product of terms in top and bottom rows, adding the result to the next term A027656: (1, 0, 2, 0, 3, ...). a(6) = 19 given: 3, 0, 2, 0, 1 1, 1, 3, 5, 10 Dot product of top row terms * bottom row terms = (1, 0, 2, 0, 3) dot (1, 1, 3, 5, 10) = (3 + 0 + 6 + 0 + 10) = 19, which is added to the next term in (1, 0, 2, 0, 3, ...); i.e., (an 0) = 19. MAPLE A027656 := proc(n) if type(n, odd) then 0; else n/2+1 ; fi; end: L := [seq(A027656(n), n=0..100)] ; read("transforms"); INVERT(L) ; # R. J. Mathar, Apr 02 2009 MATHEMATICA LinearRecurrence[{1, 2, 0, -1}, {1, 1, 3, 5}, 40] (* Vincenzo Librandi, Jul 09 2019 *) PROG (Magma) I:=[1, 1, 3, 5]; [n le 4 select I[n] else Self(n-1)+2*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 09 2019 (PARI) my(x='x+O('x^40)); Vec(x/(1-x-2*x^2+x^4)) \\ G. C. Greubel, Jul 12 2019 (Sage) a=(x/(1-x-2*x^2+x^4)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 12 2019 (GAP) a:=[1, 1, 3, 5];; for n in [5..40] do a[n]:=a[n-1]+2*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Jul 12 2019 CROSSREFS Cf. A158944, A158945, A027656. Sequence in context: A270715 A291735 A261050 * A133999 A238431 A014610 Adjacent sequences: A158940 A158941 A158942 * A158944 A158945 A158946 KEYWORD nonn AUTHOR Gary W. Adamson, Mar 31 2009 EXTENSIONS Extended by R. J. Mathar, Apr 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 10 20:26 EDT 2023. Contains 363207 sequences. (Running on oeis4.)